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Abstract. A joint distribution of an in�nite collection of random variables � (x) ; x 2 X

is exchangeable, if the joint distributions of any two �nite tuples of variables of the same

length are equal. A famous result by de Finetti shows that each random variable � (x) can

be decomposed as an outcome of two kinds of independent shocks: an aggregate shock that

a¤ects all variables in the same way and a collection of i.i.d. idiosyncratic shocks that a¤ect

each variable separately.

In this paper, we present a generalization of the de Finetti�s Theorem. We assume that all

tuples of variables of a given length are divided into �nitely many classes of analogy. A joint

distribution of all random variables is invariant if the distributions of analogous tuples of

variables are equal. Under the �nite dimensionality assumption on the system of analogies,

we show that each random variable � (x) can be decomposed into �nitely many independent

shocks. These may include the aggregate shock that a¤ects all variables, idiosyncratic shocks

that a¤ect each variable separately, and shocks that a¤ect the non-trivial subset of variables.

1. Introduction

An in�nite collection of random variables � (x) ; x 2 X is exchangeable, if the marginal
distribution over any �nite tuple of variables is equal to the marginal distribution over any
other tuple of the same length. For instance, let � and �x for each x be i.i.d. random variables
uniformly distributed on the interval [0; 1) and take any measurable function f : [0; 1)2 ! Y;

where Y is a Borel space that contains values of variables � (x) : Then, the joint distribution
of variables

� (x) := f (�; �x) for each x 2 X: (1.1)

is exchangeable. In fact, a famous result by de Finetti shows that each exchangeable collec-
tion has representation (1.1).1 The interpretation is that uncertainty about the value of � (x)
can be decomposed into two di¤erent sources: an aggregate shock � that a¤ects all variables
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� (x0) for all x0, including x0 = x; and an idiosyncratic shock �x that uniquely a¤ects variable
� (x) :

The de Finetti�s result is one of the most important ideas of the statistical decision the-
ory. Exchangeability captures a simple assumption about the environment: the names of
the variables or the order in which they are observed does not a¤ect their distribution. Be-
cause of that, it has a wide range of applications (testing for product quality, marketting
research, etc ... ) The de Finetti�s Theorem provides an easy-to-interpret representation of
exchangeable distributions. Additionally, decomposition (1.1) has implications for learning,
Bayesian decision theory (see, for example, Kreps (1988)) as well as a wide range of more
immediate applications. Unfortunately, the decomposition is limited to the situations where
exchangeability applies.
The literature (including de Finetti himself2) noticed that exchangeability has natural

extensions. As an example, consider two in�nite sequences of tosses with two di¤erent coins.
It is reasonable to assume that any two tosses from the �rst coin have the same distribution
as any other two tosses from the same coin. Because it is also reasonable to suspect that
such two tosses might have a di¤erent distribution than a toss with one coin and a toss with
another, the situation cannot be accurately described by exchangeability. In order to deal
with such situations, de Finetti suggested a weaker notion of partial exchangeability and
provided an appropriate representation result (de Finetti (1980)).
In this paper, we show that de Finetti�s type of decomposition holds under a broad class of

assumptions that are weaker than exchangeability. The primitive of the model is the binary
relation of analogy between pairs of equal length tuples of elements of X:We treat two tuples
as analogous if they are conceptually indistinguishable, i.e., there is no reason to think that
the joint distribution of variables over the �rst tuple is di¤erent from the joint distribution
over the variables over the second tuple. In the two-coin example, any two tosses of the
same coin are analogous, but they are not analogous to the two tosses from two di¤erent
coins. We say that the distribution ! of variables � (x) is invariant (with respect to the
analogy relation), if the marginal distributions over two tuples of random variables indexed
with analogous tuples are equal. Consider the following examples:

2"But the case of exchangeability can only be considered as a limiting case: the case in which this

�analogy�is, in a certain sense, absolute for all the events under consideration .... To get from the case of

exchangeability to other cases which are more general but still tractable, we must take up the case where we

still encounter �analogies�among the events under consideration, but without attaining the limiting case of

exchangeability." (de Finetti (1980))
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� Exchangeability: Let � (n) be an outcome of the nth coin toss, and the order of
tosses does not a¤ect the distribution. Here, any two equal-length tuples of distinct
elements are analogous.

� de Finetti�s partial exchangeability: Let � (i; n) be an outcome of nth toss with coin
i = 1; 2 and the order of tosses of any coin does not a¤ect the joint distribution. Two
tuples are analogous if they have the same length and each toss of coin i in the �rst
tuple corresponds to a toss of the same coin in the second tuple.

� Row-column exchangeability (Aldous (1981)): Suppose that X is an in�nite matrix of
customer-good pairs such that any two customers or any two goods are exchangeable.
For each customer c and good p; let � (c; p) be the (random) utility of customer c
from good p: Two tuples are analogous if and only if one can be obtained from the
other by exchanging the names of customers and/or goods. See Figure 1. Two tuples
(x; z) and (w; u) can be obtained from each other by exchanging the names of goods
p and p0; hence they are analogous. On the other hand, tuples (x; z) ; and (x;w) are
not analogous.

Products

p0 w u

p x z

c c0 Customers

Figure 1

� Time invariance: Suppose that X is the set of integers interpreted as di¤erent peri-
ods. Two tuples of elements of X are analogous if and only if one can be obtained
from the other by adding an integer.

We assume that the system of analogies satis�es natural consistency requirements. Addi-
tionally, we assume that the complexity of the system is bounded by a certain compactness
assumption. The assumption says that the in�nite relational system can be approximated
by �nite systems that grow at a su¢ ciently slow rate. The assumption is satis�ed by the �rst
three examples above, but not by the last example of time invariance. Given the assump-
tions, Theorem 1 shows that each invariant distribution is equal to the joint distribution of
random variables de�ned as
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� (x) := fk(x) (�x;1; :::; �x;n0) ; (1.2)

where

� U is a collection of independent and uniformly distributed random shocks drawn the
interval [0; 1),

� �x;m 2 U for each x 2 X; m � m0 <1,
� k (x) � k0 <1 for each x, and
� f1; :::; fk0 : [0; 1]

m9 ! Y are �nitely many measurable functions that may depend on
the distribution !.

In particular, each invariant distribution admits a de Finetti type of decomposition. Ad-
ditionally, Theorem 3 shows that if functions f! are to satisfy some additional symmetry
restrictions, then the existence of representation (1.2) is necessary and su¢ cient for invari-
ance.
We discuss some implications of the main result. First, decomposition (1.2) reduces po-

tentially complicated uncertainty about variables � (x) to much simpler uncertainty about
independent shocks �. It provides information about the correlations between individual
variables � (x) and � (x0) : In particular, the two random variables � (x) and � (x0) are corre-
lated only insofar they are a¤ected by the same shocks.
Second, we say that the set of elements a¤ected by the same shock is a domain of the

shock. It turns out that not all subsets of X can be domains; a domain must satisfy a certain
stability property that can be stated purely in terms of the analogy relation. Because in
typical applications that property is satis�ed by sets that share common (example-speci�c)
features, we refer to such sets as concepts. The number and the type of concepts depend
on a particular example. In the exchangeability case, there are two types of concepts: the
entire set X that forms a domain of the aggregate shock (i.e., the shock that determines
the idiosyncratic distributions) and single-element concepts fxg that form domains of the
idiosyncratic shocks. In the case of row-column exchangeability, there are two additional
types of concepts: the set of all observations associated with the same customer and the set
of observations associated with the same good.
There is a natural interpretation of shock � as a variable that aggregates the (subjective or

objective) properties of the domain. Then, representation (1.2) decomposes the uncertainty
over � (x) into the (independent) uncertainty about the properties of concepts that contain
x:

Finally, decomposition (1.2) has implications for learning theory. Recall �rst that de
Finetti�s theorem is widely interpreted as the simplest model of induction. Suppose that a
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statistician uses past data � (x0) ; x0 6= x to predict the value of yet unobserved variable � (x) :
Because of representation (1.1), one can divide the prediction into two stages:

� induction, in which the past data are used to infer the value of the aggregate shock.
Its value can be inferred from the past observations because it has the same impact
on all past observations,

� deduction, in which the value (or the distribution) of variable � (x) is predicted as a
function of the aggregate shock.

In the general case of representation (1.2), the induction stage may involve inference of
additional shocks that have smaller domains than the aggregate one. Moreover, prior to the
induction stage, one can distinguish

� conceptualization, in which element � (x) is identi�ed as a member of larger sets of
variables.

There is a substantial literature on various extensions of exchangeability (for overviews,
see Diaconis (1988), Kallenberg (2005)). Row-column exchangeability and related cases are
discussed in Aldous (1981). Hoover (1982) and Kallenberg (2005) contain further extensions.
Other notions of exchangeability that are not covered by the present model include the
extension to Markov chains presented in Diaconis and Freedman (1980).
Al-Najjar (1995) studies general (not necessarily invariant) distributions ! of random vari-

ables � (x), x 2 X: Space X is assumed to be a measurable continuum space with non-atomic
measure � 2 �X: He shows that, up to zero �-probability events, distribution ! decomposes
into aggregate and idiosyncratic shocks. In this paper, X is discrete, there is no measure
�; and we �nd many di¤erent types of shocks. Jackson, Kalai, and Smorodinsky (1999)
assume that X = N, and that ! satis�es reverse mixing condition. They show that any
such distribution can be decomposed into long-run (learnable) and short-run (unpredictable
in the long-run) e¤ects.
Section 2 de�nes the relation of analogy and states main assumptions. Section 3 shows

that any invariant distribution in relational systems that satisfy appropriate compactness
assumption has decomposition (1.2). Section 4 de�nes concepts and shows that decomposi-
tion (1.2) can be chosen so that all domains of shocks are concepts. Section 5 discusses some
examples. The necessary and su¢ cient conditions for invariance are presented in section 6.
Section 7 discusses the main ideas behind the proofs. Section 8 uses an example to show
that without the compactness assumption the results of this paper may fail. The proofs can
be found in the appendix.
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2. Relational systems

Let X be a countably in�nite with typical elements x; x0 2 X: A typical k-tuple of the
elements of X is denoted by �x = (x1; :::; xk) 2 Xk: Let �x^�x0 denote a concatenation of tuples
�x and �x0: For any set S � X; any tuple �x = (x1; :::; xk) ; we write �x � S if fx1; :::; xkg � S:

An enumeration of set S � X is a (possibly in�nite) tuple �s = (s1; s2; :::) that contains
exactly each element of set S once. The enumeration is in�nite, if set S is in�nite. Whenever
we want to �x the enumeration of set S; but the choice of enumeration is not important, we
write �S:
Let � be an equivalence relation on

S
k

Xk such that, for any two tuples �x; �x0 2
S
k

Xk; if

�x � �x0, then �x; �x0 2 Xk for some k: Relation � is called an analogy relation, if it is re�exive,
i.e., �x � �x for each tuple �x; and satis�es the following axioms: for any k; any two tuples
(x1; :::; xk) � (x01; :::; x0k) ;

� invariance to permutations:
�
x�(1); :::; x�(k)

�
�
�
x0�(1); :::; x

0
�(k)

�
for any permutation

� : f1; :::; kg ! f1; :::; kg ;
� internal consistency: (x1; :::; xk�1) �

�
x01; :::; x

0
k�1
�
;

� external consistency: for any x, there exists x0 such that (x1; :::; xk; x) � (x01; :::; x0k; x0)
For any two k-tuples �x � �x0; we say that tuples �x and �x0 are analogous. An equivalence

class [�x] � Xk of tuple �x 2 Xk is called a type of tuple �x: Set X together with analogy
relation � is called a relational system (X;�).
The analogy relation encodes prior information about the elements of X: Two analogous

tuples are treated as indistinguishable. If two tuples of elements are indistinguishable, then
neither the same reordering nor the removal of some elements should make the tuples dis-
tinguishable. Similarly, if two tuples are indistinguishable, then one should not be able to
tell them apart by looking at their relations to elements outside the tuples.
A relational system has �nitely many types of 1-tuples, if jf[x] : x 2 Xgj <1: A relational

system is transitive, if there is only one type of 1-tuples, i.e., X = [x] for each x:
For each U � X, let �U be the restriction of the analogy relation � to the tuples of the

elements of U: A �nite set U � X is local if �U is an analogy relation: In particular, the
restriction �U must satisfy external consistency: for all tuples �x; �x0 2 U if tuples �x and �x0

are analogous (as elements of X), then for each x 2 U; there exists x0 2 U such that tuples
x^�x and x0^�x0 are analogous.
A relational system (X;�) is  -compact, if there exists �nite U0 � X such that for each

local U � U0, for each x 2 X; there exists local set U 0 � U; x such that

log jU 0j �  + log jU j : (2.1)

The base of the logarithm is always equal to 2.
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We interpret local sets as �nite approximations of the in�nite relational system. The com-
pactness assumption says that the relational system can be approximated by �nite relational
systems and the cardinality of approximations does not grow too quickly. The condition
puts a bound on the complexity of relations between the elements of X : the more complex
are relations between x and elements of a local set U; the less likely that there is a small
set U 0 � U; x that satis�es external consistency. All but one example of relational systems
(including the one discussed immediately below) are  -compact for each  � 1

20
:3 Section 8

presents an example of a 1-compact relational system.

2.1. Example: Multiple customers and goods. We use the row-column exchangeability
example mentioned in the introduction to illustrate the de�nitions and the results of the
paper. Consider a statistician who studies purchases in a population of customers. Let
X = C � P , where C is an in�nite set of customers, and P is an in�nite set of goods. Let
� (c; p) be the utility of customer c from purchasing good p. Suppose that the statistician
has no prior information that leads to meaningful di¤erences between customers or goods.
For instance, the statistician identi�es customers by their names, but there are no reasons
to believe that the knowledge of names does not help in predicting purchases.
De�ne two equivalence relations on set X : for each x = (c; p) ; and x0 = (c0; p0) ;

xRCx
0 if and only if c = c0;

xRPx
0 if and only if p = p0:

For each two tuples �x and �x0 of the same length k, say that the tuples are analogous, �x � �x0
if and only if for each l;m � k;

xlRCxm if and only if x0lRCx
0
m, and

xlRPxm if and only if x0lRPx
0
m:

It is easy to check that so de�ned relation � is re�exive and it satis�es the other properties
of the analogy relation.
We show that the relational system (X;�) is 1

20
-compact. It is easy to notice that all

�nite sets C0 � C; and P0 � P , set C0�P0 is local. In fact, there is a �nite set U0 such that
each local U � U0 is equal to C0 � P0 for some �nite C0 and P0: For each x = (c; p) ; and
each C0; P0; let

C 00 = C0 [ fcg and P 00 = P0 [ fcg :

3In fact, it follows from the proof of our main result that if the relational system has �nitely many types

of 1-tuples and it is 1
20 -compact, then it is  -compact for any  > 0:
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Then, for su¢ ciently large C0 and P0;

jC 00 � P 00j
jC0 � P0j

� (jC0j+ 1) (jP0j+ 1)
jC0j jP0j

� 2 1
20 :

3. Invariant distributions

Let ! 2 �(Y )X denote the joint distribution of variables f� (x)gx2X : Distribution ! is
(X;�)-invariant if for any two analogous tuples �x � �x0 2 Xk; any Borel sets U1; :::; Uk � Y;

! (� (xi) 2 Ui; i � k) = ! (� (x0i) 2 Ui; i � k) :

Invariant distributions can be treated as functions of the tuples of the elements of X into
the space of the distributions of the tuples of the elements of Y: Then, loosely speaking,
invariant distributions are measurable with respect to partitions of the space of the tuples
induced by the classes of analogy.
Let U = f�ig be an in�nite collection of i.i.d. random variables, all uniformly distributed

on interval [0; 1] : Take any function k : X ! f1; :::; k0g and n : X ! Um0 for some �nite
k0;m0 < 1: We refer to k and n as a pair of assignments. Distribution ! admits (k; n)-
decomposition, if there are measurable functions f!1 ; :::; f

!
k0
: [0; 1]m0 ! Y such that ! is

equal to the joint distributions of variables

� (x) := f!k(x) (n1 (x) ; :::; nm0 (x)) , x 2 X: (3.1)

In other words, each variable � (x) can be decomposed into �nitely many independent shocks,
and the decomposition uses one of �nitely many di¤erent functions.
If X is �nite, then any (not necessarily invariant) distribution has a �nite decomposition.

Similarly, for any distribution, there exists a decomposition with one random shock, but
in�nitely many aggregating functions.4 The main result of this paper is that under the ap-
propriate compactness assumption, any invariant distribution admits a �nite decomposition.

Theorem 1. Suppose that X is a countably in�nite, relational system (X;�) �nitely many
types of 1-tuples and it is 1

20
-compact. Then, there is a pair of assignments k and n; so that

each (X;�)-invariant distribution ! admits (k; n)-decomposition.

Theorem 1 presents the conditions necessary for invariance on relational systems. Each
invariant distribution has a �nite decomposition, i.e., (k; n)-decomposition for some assign-
ments k; and n.

4Standard results show that for each Borel space �Y (a category that includes Polish spaces), each distri-

bution ! 2 �Y; there exists a measurable function g! : [0; 1]! Y such that ! is equal to the distribution of

g! (�) , where � is uniformly distributed on the interval [0; 1] : For example, if �Y = Y X ; then distribution

! has a decomposition with in�nitely many aggregating functions f!x (�) := (g (�))x .
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If there are in�nitely many types of 1�tuples, then there are distributions without �nite
decomposition and the thesis of the Theorem does not hold.5

Some restrictions on the complexity of the relational system are necessary for �nite de-
compositions. It is not di¢ cult to �nd examples that are not compact and that do not satisfy
the thesis of the Theorem (for instance, the time invariance case from the introduction is one
of them). A more narrow question is whether constant 1

20
in the statement of the Theorem

can be increased. Although we suspect that 1
20
is not the best possible, we show that the

constant cannot be chosen too high. Speci�cally, the Theorem fails, i.e., there are invariant
distributions without �nite decompositions, in the 1-compact example from Section 8.
The representation 3.1 is not unique. To see why, consider any measure preserving bijec-

tion o : [0; 1] ! [0; 1]. Then, the joint distribution of variables (3.1) is equal to the joint
distribution of variables

�0 (x) := f!k(x) (o � n1 (x) ; n2 (x) ; :::; nm0 (x)) , x 2 X:

Finally, the existence of �nite decomposition is not su¢ cient for the distribution ! to be
invariant. Theorem 3 below presents the necessary and su¢ cient conditions for invariance.
Theorem 1 is a corollary to the more comprehensive Theorem 3 below.

3.1. Example: Multiple customers and goods. In our example, distribution ! is in-
variant if and only if it remains unchanged under (separate) permutations of customers
and products. Aldous (1981) calls such distributions row-column exchangeable. He shows
that, for any row-column exchangeable distribution !; there exists a measurable function
f : [0; 1)4 ! f0; 1g ; such that ! is equal to the joint distribution of variables

� (c; p) := f
�
�X ; �c; �p; �(c;p)

�
for each (c; p) 2 X: (3.2)

Each variable � (c; p) is a composition of four types of shocks: �X is the aggregate shock with
the domain equal to the entire space X, �c is the customer-speci�c shock with the domain
equal to set Sc = f(c; p0) : p0 2 Pg ; �p is the good-speci�c shock with the domain equal to
Sp = f(c0; p) : c0 2 Cg ; and �(c;p) is the idiosyncratic shock with the single-element domain
(c; p). In particular, decomposition (3.2) is a special case of Theorem 1.

4. Domains of shocks

One of the implications of the decomposition (3.1) is that there are sets of variables that
possibly contain more than one element, and that are a¤ected by the same shocks. We call

5Suppose that f1; f2::: : [0; 1]! Y is a sequence of pairwise di¤erent measurable functions. Let x1; x2; :::

be a sequence of elements such that no two elements have the same type. For each x that is analogous to

xn, de�ne � (x) := fn
�
�[xn]

�
. The joint distribution of � (x) is invariant, but the representation requires

in�nitely many aggregating functions.
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such sets the domains of the shock. Formally, say that x 2 X is not a¤ected by shock � 2 U , if
for almost all realizations of shocks �0 2 Un f�g, f!k(x) (n1 (x) ; :::; nm0 (x)) is an almost surely
constant function of the realization of shock �: In particular, if � =2 fnm (x) ;m � m0g, then
x is not a¤ected by �: De�ne the domain of �, D (�) as the set of elements of X that are
a¤ected by �:
Next, we characterize a certain stability of the domain. For any x 2 X; say that two

(possibly in�nite) sets S; S 0 are analogous relative to x, if there exist enumerations s1; s2; :::
and x1; x2; ::: of sets, respectively, S and XnS, and enumerations s01; s02; :::; and x01; x

0
2; :::

of sets, respectively, S 0 and XnS 0 such that for any m; tuples (x; s1; x1:::; sm; xm; ) and
(x; s01; x

0
1; :::; s

0
m; x

0
m) are analogous. Informally, two sets are analogous relative to x if they

have similar positions relative to x:
Say that set S � X is the concept if the number of sets S 0 that are analogous to S relative

to x is �nite and uniformly bounded across all x 2 S;

iS := sup
x2S

jfS 0 : S is analogous relative to xgj <1:

We refer to iS as the index of concept S:
For example, sets X and fxg for each x 2 X are concepts with index 1 in any relational

system. We refer to such sets as trivial concepts. Examples of non-trivial concepts are
presented below. In a typical application, concepts consist of elements that "share certain
feature." The exact meaning of "sharing a feature" depends on the particular application.
In contrast, our de�nition of a concept applies to all relational systems.

Theorem 2. Take the same assumptions as in Theorem 1. Then, the pair of assignments
k and n can be chosen so that for each shock �, D (�) is a concept.

In the appendix, we show that each element x of a 1
20
-compact relational system with

�nitely many 1-types belongs to �nitely many concepts (see also Section 7.2.5). Thus, there
are signi�cantly fewer concepts than all sets. Moreover, the enumeration of all concepts is
typically easy. This fact helps the application of Theorem 1. In order to �nd a decomposition
of an invariant distribution, one has to consider all possible domains of the shocks. This
task is easier if the domains must belong to a (relatively) small class of concepts.
A simple heuristics explains why the domains should be concepts. Suppose that the

domain of shock � is not a concept and there exists x 2 D (�) such that there are in�nitely
many sets D that are analogous to D (�) relative to x: For each such D; �nd a shock �0D
such that D (�0) = D: By invariance, � (x) must be a¤ected by each shock �D in exactly the
same way as by the shock �: If there are in�nitely many sets D that are analogous to D (�)
relative to x; then � (x) is a¤ected in exactly the same way by in�nitely many independent
shocks. But this is impossible, unless the e¤ect of � on � (x) is equal to 0 and x =2 D (�).
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4.1. Example: Multiple customers and goods. There are only four types of concepts:
the trivial concepts X and fxg for x 2 X; the concept of customer Sc for some c; and the
concept of good Sp for some p: (Sets Sc and Sp are de�ned in Section 3.1.) The formal
argument is presented in Appendix A. Here, we discuss two examples. See Figure 2. Set
Sc consists of all observations associated with customer c: It is easy to check that any set
that is analogous to Sc relative to any x 2 Sc must be equal to Sc: On the other hand, set
S = Sc [ Sc0 consists of all observations associated with customers c or c0 6= c: Relative to x;
S is analogous to any other set S 0 = Sc [ Sc00 that consists of observations associated with
customers c or c00 6= c: Because there are in�nitely many such sets, S cannot be a concept.

x

S1

P/C c

;

x

S2 S2
S 02 S 02

P/C c c0 c00

Figure 2.

5. Examples

We discuss examples of relational systems. As in the main example, it is often easier to
describe the analogies using other, more primitive relations. A k-ary relation R(k) on X is
de�ned as a subset R(k) � Xk: Let R =

n
R
fkig
i

o
i2I

be a collection of relations on X: For

any two tuples �x = (x1; :::; xk) ; �x
0 = (x01; :::; x

0
k) ; say that tuples �x and �x

0 are (R)-inner
analogous, if and only if for each i 2 I; l1; :::; lki � k;�

xl1 ; :::; xlki

�
2 Ri i¤

�
x0l1 ; :::; x

0
lki

�
2 Ri:

The inner analogy satis�es invariance to permutations and internal consistency. Additionally,
if the inner analogy satis�es external consistency, then the inner analogy is an analogy
relation; we say that the analogy relation is induced by R and write (X;R) for the induced
relational system.
External consistency is satis�ed in all the examples below.

5.1. Trivial system. In this example, we formally describe the relational system in which
invariance is equivalent to de Finetti�s exchangeability. Let 0 =0� R2 be the binary relation
of equality: for any x; x0 2 X; x^x0 20=0 i¤ x = x0: In relational system (X;0=0), any two
tuples of an equal number of distinct elements are analogous. In particular, invariance with
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respect to analogies induced by 0 =0 is equivalent to exchangeability. Additionally, it is easy
to check that any �nite subset of X is local and the system is 1

20
-compact.

The trivial concepts, the entire space X and one-element sets fxg for each x 2 X, are
the only concepts of the system (X;0=0). A version of de Finetti�s Theorem says that any
exchangeable distribution ! is equal to the joint distribution of (1.1) (see Kallenberg (2005)).
.

5.2. Multiple goods with multiple disconnected customers. Next, we discuss two
versions of the main example from Section 2.1. First, we show that a removal of some
relations from the relational system may reduce the collection of concepts. Let (X;�) be
the relational system from Section 2.1. Let relation RP be de�ned as above and de�ne a new
analogy relation �� be induced by relation RP and the equality relation.
The relational system (X;��) describes analogies in a situation in which the data collected

do not ensure that the population of customers of one product is in any way related to the
population of the customers of the other product. The customers of two di¤erent products
may be coded with the same label, but there is no reason to believe that observations (c; p)
and (c; p0) are associated with the same customer. For example, for any customers c; c0 and
any products p; p0;

((c; p) ; (c; p0)) �� ((c; p) ; (c0; p0)) :
To see the di¤erence between analogy relations �� and �, notice that

((c; p) ; (c; p0)) � ((c; p) ; (c0; p0)) :

There is only one type of non-trivial concept in the relational system (X;��): concept of
product Sp = f(c; p) : c 2 Cg. (This claim and other similar claims in this Section can be
proven with similar methods as those applied in Appendix A. We omit the details.) For each
invariant !; there is a measurable function f : [0; 1]3 ! R such that ! is equal to the joint
distribution of

� (c; p) = f
�
�X ; �p; �(c;p)

�
, for each (c; p) 2 X; (5.1)

where �X is the aggregate shock, �p is the shock associated with concept Sp; and �(c;p) is
the idiosyncratic shock. Notice that the only di¤erence between (5.1) and (3.2) is that the
former does not include the customer-speci�c shock.

5.3. Customers, goods, incomes, and prices. Here, we describe a non-transitive version
of the example from Section 2.1. Suppose that the statistician studies the distribution of
purchases of in�nitely many goods together with a distribution of customers� income and
the prices of goods. Let X = C � P [ C [ P and let � (c; p) 2 f0; 1g be the indicator of a
purchase, � (c) 2 R be the income of customer c; and � (p) be the price of good p:
De�ne relations on X : for each x; x0 2 X
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� unary R0C : R0Cx if x 2 C;
� unary R0P : R0Px if x 2 P ,
� binary RC : xRCx

0 if and only if x and x0 refer to the same customer (for example,
x = c and x0 = (c; p) for some c 2 C and p 2 P ),

� binary RP : xRPx
0 if and only if x and x0 refer to the same good (for example, x = p

and x0 = (c; p) for some c 2 C and p 2 P ).

LetRCPIP = fR0C ; RC ; R
0
P ; RPg. The relational system induced byRCPIP is not transitive: the

unary relations divide spaceX into three types of 1-tuples: purchase decisions C�P , incomes
of customers C; and prices of goods P:
Similarly as in Section 2.1, we show that the relational system (X;RCPIP ) is 1

20
-compact.

We enumerate all concepts. For each customer c and product p; de�ne

S0c = fcg � P; Sc = fcg [ S0c ;
S0p = C � fpg ; Sc = fpg [ S0p :

For example, Sc = fcg[S0c is the set of all observations associated with customer c (including
c�s income). All concepts are either trivial or belong to one of the above type.
Theorems 1 and 2 show that each invariant distribution has a decomposition into shocks

with concept domains. In fact, for each invariant !, there are measurable functions f :
[0; 1)4 ! f0; 1g, and fC ; fP : [0; 1)2 ! R such that ! is equal to the joint distribution of
variables

� (c) := fC
�
�X ; �S(c)

�
for each c 2 C;

� (p) := fP
�
�X ; �S(p)

�
for each p 2 P;

� (c; p) := fC�P
�
�X ; ; �c; �p; �(c;p)

�
for each c� p 2 C � P;

where �X is the aggregate shock, �c is the customer-speci�c shock, �p is the product-speci�c
shock; and �(c;p) is the idiosyncratic shock: Note that even if the variables � (c; p) ; � (c), and
� (p) are generated through di¤erent aggregating functions fC�P ; fC , and fP , they can be
correlated with each other through common shocks �X ; �S(c); and �S(p):

5.4. Bundles of goods. The last two examples introduce two ideas that appear in the
necessary and su¢ cient conditions for invariance: symmetry of the aggregating function
f (:) and orientations of shocks. Additionally, the example described in this section has a
concept with an index that is higher than 1.
Suppose that a company studies the demand for bundles of goods. Let P be a countable

set of goods. De�ne X = fx � P : jxj = kg as the set of k-element subsets of P: For each
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l � k; de�ne binary relations Rl : for each x; x0 2 X;

xRS
l x

0 i¤ jx \ x0j = l:

In other words, two elements of X are in relation Rl to each other, if their intersection has
exactly l elements.
For simplicity, we focus on the case of k = 2: Consider the relational system gener-

ated by relations R1 and R2: There is only one type of non-trivial concept: Let S (p) =
fx 2 X : p 2 Pg be the set of all observations associated with good p: One checks that set
S (p2) is the only set apart from S (p1) that is analogous to S (p1) relative to bundle fp1; p2g :
In particular, S (p) is a concept with index 2: Any invariant ! is equal to the joint distribution
of

� fp1; p2g := f
�
�X ; �p1 ; �p2 ; �fp1;p2g

�
; (5.2)

where f : [0; 1)4 ! Y is measurable, �X is the aggregate shock, �p is the product-speci�c
shock, and �fp1;p2g is the idiosyncratic shock:
In order for the joint distribution of (5.2) to be invariant, it is necessary and su¢ cient to

require that the value of the aggregating function f does not change with a permutation of
the second and third coordinates: for all realizations �X ; �p1 ; �p2 ; �(p1;p2) 2 [0; 1) ;

f
�
�X ; �p1 ; �p2 ; �(p1;p2)

�
= f

�
�X ; �p2 ; �p1 ; �(p1;p2)

�
: (5.3)

Intuitively, the label of each bundle fp1; p2g does not depend on the ordering of goods p1
and p2; and the realization of variable � fp1; p2g should be the same if p1 were switched with
p2.

5.5. Multiple customers and two goods. Finally, consider yet another version of the
example from Section 3.1, but with two goods only, P = fp1; p2g. Suppose that the statis-
tician does not have any prior information that distinguishes between the two goods. The
relational system is induced by the same (appropriately restricted) relations RC and RP .
Then, for each invariant !, there exists measurable functions f1; f2 : [0; 1)

2 ! f0; 1g such
that ! is equal to the joint distribution of variables

� (c; pi) = fi (�X ; �c) ; (5.4)

where �c is the customer-speci�c shock.
Additionally, distribution (5.4) is invariant if that for all �X and �c,

f2 (�X ; �c) = f1 (1� �X ; 1� �c) : (5.5)

(The formal derivation can be found in Section 7.1.7.) We say that the shocks come in
one of two orientations: � and 1 � �: Each orientation is associated with one of the goods.
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Section 6 formally de�nes the orientations and uses them to state the su¢ cient and necessary
conditions for invariance.

6. System of orientations

In this section, we derive the necessary and su¢ cient conditions for invariance. We use two
ideas that were introduced in the last two examples of Section 5. First, we add a possibility
that the shocks come with orientations. Second, we describe a notion of symmetry for
aggregating functions.

6.1. Orientations. Measurable mapping q : [0; 1) ! [0; 1) is an orientation, if it preserves
Lebesgue measure �; i.e., for each measurable E � [0; 1) ; � (q (E)) = q (E) : A �nite set of
orientations P is regular if id 2 P , for each q; q0 2 P; q � q0 2 P , and there exists an interval
I0 � [0; 1) such that fq (I0) ; q 2 Pg is a partition of [0; 1) into jP j subintervals.

Example 1. For each � 2 [0; 1), let id (�) = �, and q0 (�) = 1� �: Then id = q20 and q0 are
orientations, and sets fidg and fid; q0g (but not fq0g) are regular sets of orientations with,
respectively, intervals [0; 1) and

�
0; 1

2

�
.

Let (X;�) be a relational system. Let U be a collection of i.i.d. random shocks uniformly
distributed on the interval [0; 1) : A realization of all shocks in U is denoted as u 2 [0; 1)U :
Let �U be the joint distribution of shocks u, i.e., �U is the product of Lebesgue distributions
on the interval [0; 1) : For each shock � 2 U ; let Q� be a �nite and regular set of orientations.
Let O =

S
�2U

f�g �Q�. Each element o = (�; q) 2 O is called an orientation of shock �:

A system with orientations of (X;�) is a relational system (X [ O;�) such that
� � is the extension of the original relation of analogy from set X to X [ O; and
� for each tuple of orientations �o = ((�; q1) ; ::::; (�; qm)) of shock �; if �o is analogous
to tuple �o0 then there are shocks �0 and q 2 Q�0 such that Q� = Q�0 and �o0 =
((�0; q1 � q) ; :::; (�0; qm � q)) :

The �rst part of the de�nition ensures that the original analogy relation and the analogy
relation in the system with orientations agree on X: The second part ensures that (a) tuples
of orientations of the same shock � are analogous only to tuples of orientations of the same
shock �0 (possibly, �0 6= �), and that (b) the regular structure of orientations is preserved by
analogies.

6.2. Symmetric functions. Orientations of shocks a¤ect their values in the following way.
Take any realization of shocks u 2 [0; 1)U : For each tuple of orientations

�o = ((�1; q1) ; ::::; (�n; qn)) ,
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de�ne the n-tuple

�o (u) := (q1 (u (�1)) ; :::; qn (u (�n))) 2 [0; 1)n :

In other words, tuple �o (u) consists of the realization of shocks �1; :::; �n "interpreted" ac-
cording to orientations q1; :::; qn:
Fix x 2 X; n 2 N; and a tuple of orientations �o 2 On:Measurable function f : [0; 1)n ! Y

is (x; �o)-symmetric, if for each u 2 [0; 1)U and for all tuples of orientations �o such that x^�o
and x^�o0 are analogous,

f (�o (u)) = f (�o0 (u)) .

To see what symmetry means, notice that tuples �o and �o0 may di¤er in terms of the order
and the orientations of shocks. Then, function f (:) is symmetric if it does not change after
certain reorderings of its parameters (as in the example from Section 5.4), and with respect
to some changes in the orientations (as in the example from Section 5.5).

6.3. Decompositions. Orientations and symmetric functions can be used to construct in-
variant distributions. For each x0 that is analogous to x; �nd a tuple of orientations �ox

0
such

that x0^�ox
0
is analogous to x^�o (such tuple exists because of the consistency axioms). For

each realization of shocks u 2 [0; 1)U ; de�ne

�f;x;�o (x;u) := f
�
�ox

0
(u)
�
: (6.1)

It can be shown (Lemma 50 in Appendix G) that symmetry implies that (6.1) does not
depend on the choice of orienting tuple �ox

0
as long as x0^�ox

0
is analogous to x^�o. Notice that

�f;x;�o (x;u) is a function of the random realization of the shocks, and hence, it is a random
variable.
We describe the construction in two cases separately. First, we assume that the relational

system (X;�) is transitive. Take any x� 2 X and the tuple of orientations �o� � O: Distribu-
tion ! admits (x�; �o�)-decomposition if there exists (x; �o)-symmetric function f : [0; 1)n ! Y

such that ! is equal to the joint distribution of variables

�f;x;�o (x;u) ; x 2 X:

In the general case, assume that the relational system has �nitely many 1-tuples, and let
V = f[x] : x 2 Xg. Suppose that the tuple (xv; �ov) consists of elements xv 2 v and tuples
of orientations �ov for each type v 2 V: Distribution ! admits (xv; �ov)v2V -decomposition, if
there exist (xv; �ov)-symmetric functions f v : [0; 1)n

v

! Y for v 2 V such that ! is equal to
the joint distribution of variables

�f
v ;xv ;�ov (x;u) ; x 2 v 2 V:
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6.4. Su¢ cient and necessary conditions for invariance. The next result describes the
necessary and su¢ cient conditions for invariance.

Theorem 3. Suppose that the relational system (X;�) has �nitely many types of 1-tuples,
V = f[x] : x 2 Xg and jV j < 1. For each system with orientations (X [ O;�), elements
xv; and tuples of orientations �ov, v 2 V; if distribution ! admits (xv; �ov)-decomposition, then
it is (X;�)-invariant.
Additionally, if (X;�) is 1

20
-compact, then there exists a relational system with orientations

(X [ O;�), elements xv; and tuples of orientations �ov, v 2 V such that each (X;�)-invariant
distribution admits (xv; �ov)-decomposition:

The �rst part of the Theorem is relatively straightforward, and its (elementary) proof can
be found in appendix G. We describe the ideas lying behind the second part in Section 7
below. The formal proof can be found in Section 7.3.3.
Next, we discuss how the systems of orientations and symmetric functions �t into examples

from Sections 5.4 and 5.5.

6.5. Example: Bundles of goods. Consider Example 5.4. Assume that U consists of
shocks �X ; �p; and �x for p 2 P and x 2 X: There is only one orientation of each shock
� 2 U , O� = fo�g = f(�; id)g :
Let (X [ O;�) be the relational system induced by a unary relationRO and binary relation

RP de�ned so that for each x; x0

� ROx if and only if x is an orientation; and
� xRPx

0 if and only if x and x0 are associated with the same good (we say that x 2 X[O
is associated with good p 2 P if and only if either x = (p; p0) for some p0 2 P , or x is
an orientation of shock � = �p and or � = �p;p0 for some p0 6= p: for each x; x0 2 X[O).

Take any x = (p1; p2) and let �o =
�
oX ; o�p1 ; o�p2 ; o�p1;p2

�
: If tuple �o is analogous to tuple

�o0 relative to x, then either �o = �o0, or �o0 =
�
oX ; o�p2 ; o�p1 ; o�p1;p2

�
: Therefore, a measurable

f : [0; 1)4 ! Y is (x; �o)-symmetric if and only if condition (5.3) holds for all realizations
�X ; �p1 ; �p2 ; �(p1;p2) 2 [0; 1) :

6.6. Example: Multiple customers and two goods. Consider Example 5.5. Let U = f�Xg[
f�c; c 2 Cg. Let fid; q0g be the set of orientations from Example 1. Let O = U �fid; q0g : In
other words, each shock has two orientations. We associate orientation id with good p1 and
orientation q0 with good p2. The association between orientations and goods is arbitrary,
and the opposite association would not change the analysis.
De�ne unary RO and binary RP ; RC relations on set X [ O : for each x; x0;
� ROx if and only if x is an orientation;
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� xRPx
0 if and only if x and x0 are associated with the same good,

� xRCx
0 if and only if x; x0 2 X and x and x0 are associated with the same customer,

Then, the relational system induced by the three relations is a system of orientations.
Fix x = (c; p) ; and a tuple of orientations �o = ((�X ; id) ; (�c; id)) : Tuple x^�o0 is analogous

to tuple x^�o if and only if �o = �o0. Thus, any measurable function f : [0; 1)2 ! Y is
(x; �o)-symmetric, and for each x0 = (c0; p0) ; each tuple x0^�o0 that is analogous to x^�o; each
realization of shocks u;

f (�o0 (u)) =

(
f (u (�X) ; u (�c)) ; if p0 = p,

f (1� u (�X) ; 1� u (�c)) ; if p0 6= p.

7. Ideas behind the proof of Theorem 3

Here, we describe the main ideas behind the proof of Theorem 3. This section should be
treated as a guide toward reading Appendices B-G.
The proof has two essentially di¤erent parts: probabilistic and algebraic. In the �rst part

of the section, we describe the main tools that are important for the probabilistic part of the
argument. The tools are illustrated in the examples discussed earlier in this paper. Section
7.2 discusses the algebraic part: The goal is to �nd a convenient representation of 1

20
-compact

relational systems. Section 7.3 discusses how the various parts come together in the proof
of the general case.

7.1. Main tools.

7.1.1. Borel decomposition. We describe a technique to replace an arbitrary probability
measure by the uniform distribution on the interval [0; 1) : Below, we always assume that
�0; �; �a 2 U for a 2 A are distinct, independent, uniformly distributed on the interval [0; 1)
random shocks. Let Y and Y0 be standard Borel spaces. The results mentioned here are
standard, and their proofs can be found, for example, in Kallenberg (2005).
The key observation is that if ! 2 �Y is a distribution of Y -valued variable �; then �

can be represented as a transform of a random shock �: there exists a measurable function
f : [0; 1)! R such that ! is equal to the distribution of f (�) :
The key observation has multiple extensions. For example, a conditional version of the

above result holds. Suppose that ! 2 �(Y0 � Y ) is a joint distribution of a pair of variables
(�0; �) : Then, there is a measurable function f : Y0� [0; 1)! Y such that the !-conditional
distribution of � given �0 is equal to f (�0; �) :
The conditional version can be further compounded with the Borel decomposition result

for variable �0 leading to a measurable f0 : [0; 1) ! Y0 such that ! is equal to the joint
distribution of (f0 (�0) ; f (f0 (�0) ; �)) :



DECOMPOSITION OF UNCERTAINTY IN RELATIONAL SYSTEMS 19

Finally, the Borel decomposition adapts in a natural way when some of the variables are
independent or, more generally, conditionally independent. Suppose that ! 2 �

�
Y0 � Y A

�
is a distribution over variables �0 and � (a) ; a 2 A such that variables � (a) is conditionally
independent from variables � (a0) ; a0 6= a given �0: Additionally, assume that the conditional
distributions of � and �0 are equal. Then, there are measurable functions f0 : [0; 1) ! Y0

and f : [0; 1)2 ! Y such that ! is equal to the joint distribution of f0 (�0) and f (�0; �a) for
a 2 A:
Appendix F.1 presents speci�c versions of the Borel decomposition results used in this

paper.

7.1.2. Conditional independence. Suppose that (X;�) is a relational system. Let A;B;C �
X be subsets of X such that A and C are disjoint. If A is �nite, say that sets A conditionally
independent from C given B; if for each enumeration �a of setA; for each �nite tuple �c � B[C;
there exists tuple �b � B such that �a^�c and �a^�b analogous: If A is in�nite, then say that
A is conditionally independent from C given B if each �nite subset of A is conditionally
independent from C given B:
The de�nition is motivated by the following observation: Under invariant distributions, the

conditional independence of sets implies the conditional independence of random variables.

Lemma 1. Let A;B;C � X be disjoint sets such that A is conditionally independent
from C given B: For any invariant distribution !; the joint realization of random variables
f� (x) ; x 2 Ag is conditionally independent from f� (x) ; x 2 Cg given f� (x) ; x 2 Bg :

! (� (x) ; x 2 Aj� (x) ; x 2 B [ C) = ! (� (x) ; x 2 Aj� (x) ; x 2 B) :

Proof. Suppose that A is �nite and let �a be an enumeration of A. For any function q : Y A !
R; for any set U � B [ C; de�ne

VU (q) = E! (q � E! (qj� (x) ; x 2 U))2 :

Take any U � W � B[C: By Jensen�s inequality, VU (q) � VW (q). Moreover, E! (qj� (x) ; x 2 U) =
E! (qj� (x) ; x 2 W ) if and only if VU (q) = VW (q) for each q : Y A ! R:

Suppose that for two sets C 0 and B0, and their enumerations �c and �b; tuples �a^�c and �a^�b
are analogous: Then, the invariance of ! implies that VB0 (q) = VC0 (q) :

We show that VB[C (q) = VB (q) for each q : Y A ! R: On the contrary, suppose that
VB[C (q) < VB (q) for some q: There exists a �nite C 0 � B [C such that VC0 < VB (q) : Take
any enumeration �c of C 0 and let B0 � B be a subset and �b its enumeration such that �a^�c
and �a^�b are analogous: By invariance,

VB (q) > VC0 (q) = VB0 (q) � VB (q) :
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The contradiction establishes the result for �nite A: The in�nite case follows from the
standard probability arguments. �

7.1.3. Isomorphic subsets. It is sometimes convenient to describe the decomposition of un-
certainty on a properly chosen subset X0 � X instead on the original space X: Set X0 should
be su¢ ciently large so that the decomposition on X0 implies the decomposition on X:
Say that mapping � : X ! X preserves analogies, if each tuple �x = (x1; :::; xk) is analogous

to tuple � (�x) = (� (x1) ; :::; � (xn)) : Say that X0 is isomorphic toX if there exists a bijection
� : X ! X0 such that � and ��1 preserve analogies. Using bijection �; we can go back
and forth between sets X0 and X: On the one hand, an invariant distribution on X can be
mapped to an invariant distribution on X0: On the other, if we can �nd the decomposition
on X0; then the inverse ��1 maps the decomposition back into the original space X:

7.1.4. Example: Exchangeability. We illustrate the above techniques in the case of the orig-
inal de Finetti Theorem. Suppose that and that the distribution ! of variables � (x) ; x 2 X
is exchangeable, i.e., the joint distribution over any (the same length) tuple of variables is
the same. We assume without the loss of generality that X = Z is a set of integers.
Let X0 = fx : x � 0g and E = fx : x < 0g : Then, sets X0 and X are isomorphic. More-

over, notice that for each x 2 X0 is conditionally independent from all x0 6= x given E:
Let � (X0) and � (E) denote the collections of all variables indexed with, respectively, non-

negative integers X0 and set E: Because sets X0 and X are isomorphic, the joint distribution
of � (X0) is equivalent to the joint distribution of � (X0)[� (E) : So, it is enough to show that
the marginal distribution over variables � (X0) has representation (1.1). Because of Lemma
1, variable � (x) is (probabilistically) conditionally independent from any set of variables
� � � (X0) n f� (x)g : Additionally, exchangeability implies that the conditional distributions
of variables in � (X0) given � (E) are identical.
Let �e be an arbitrary enumeration of set E: Let � (�e) = (� (e1) ; � (e2) ; :::) 2 Y jEj be a

random jEj-tuple of elements of the outcome space Y . By the Borel decomposition, there
exists a measurable function fX : [0; 1)! Y jEj such that the !-distribution of � (�e) is equal to
f0 (�X) : By another application of the Borel decomposition, there exists measurable functions
fx : Y

jEj � [0; 1) ! Y such that the conditional distribution of � (x) given � (�e) is equal to
fx (� (�e) ; �x) : Invariance implies that we can choose the functions so that fx = fx0 for each
x; x0 2 X0. Because of (probabilistic) conditional independence, the conditional distribution
of � (X) is equal to the joint distribution of variables f (� (�e) ; �x) : Finally, we can compound
the two functions to obtain

f (�X ; �x) := fx (fX (�X) ; �x) for each x 2 X.
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7.1.5. Hierarchy of conditional independent sets. In many cases, we are able to identify
an entire hierarchy of conditionally independent subsets. Precisely, suppose that S0 is a
collection of subsets of X partially ordered by inclusion. For each element S 2 S0; de�ne

tS = fS 0 2 S0 : S 0 � S; S 0 6= Sg ;
uS = fS 0 2 S0 : S 0 � Sg :

Here, tS consists of the elements of S0 that strictly include S; uS consists of the elements
of S0 that are either equal or strictly included in S:
Consider a collection fE (S) : S 2 S0g of sets of X: For each S 2 S0, let

E (tS) =
[

S02tS
E (S 0) ;

and similarly de�ne E (uS).
We say that collection E (:) is a (S0-)hierarchy of conditionally independent sets, if for

each S 2 S0; E (S) is conditionally independent from XnE (uS) given E (tS) :
In general, a hierarchy of independent sets may involve a series of conditional independence

statements, whose length depends on the length of chains in collection S0. In the case
analyzed in the above Section 7.1.4, a hierarchy is almost trivial as it involves only one
level of conditional independence. (Notice that we can take S0 = fXg [ fx 2 X0g and let
E (X) = E, and E (x) = fxg for each x 2 X0. Then, the hierarchy implies that E (x)
is independent from X0nE (x) given E (X).) Next, we present a less trivial example of a
hierarchy.

7.1.6. Example: Multiple customers and goods. Next, suppose that X = C � P and that
distribution ! of variables � (x) ; x 2 X is invariant with respect to the analogy relation from
Section 2.1. W.l.o.g. assume that countable sets C and P are disjoint copies of the set of
integers Z. De�ne

C0 = fc 2 C : c � 0g , P0 = fp 2 P : p � 0g ;
X0 = C0 � P0.

Then, set X0 is isomorphic to X.
De�ne a collection of sets

S0 = fXg [ fSc : c 2 C0g [ fSp : p 2 P0g [ ffxg : x 2 X0g .
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De�ne collection fE (S) : S 2 S0g:

E (X) = f(c; p) : c; p < 0g ;
E (Sp) = (CnC0)� fpg for each p � 0;
E (Sc) = fcg � (PnP0) for each c � 0;
E (x) = x for each x 2 X0: (7.1)

Then, collection E (:) is a hierarchy of conditionally independent sets. Speci�cally,

� set E (Sc) is conditionally independent from Xn (fcg � P ) given E (X) ;
� set E (Sp) is conditionally independent from Xn (C � fpg) given E (X) ;
� x = (c; p) 2 X0 is conditionally independent from any X0n fxg given E [ E (Sc) [
E (Sp) :

For each set A; let � (A) = f� (a) ; a 2 Ag : Then, because X0 and X are isomorphic, the
distribution of � (X0) is equivalent to the distribution of all variables � (X) : A hierarchy of
conditional independencies leads to a hierarchy of Borel decompositions:

::: cm; p ::: c2; p c1; p c; p

::: cm ::: c2 c1;p1 c; p1

p2 c; p2

::: :::

pm c; pm
P=C :::

(1) Let �eX be an enumeration of set E (X) : Let �
�
�eX
�
=
�
�
�
�eX1
�
; :::
�
. Then, there exists

a measurable function fX : [0; 1) ! Y jE(X)j such that the distribution of �
�
�eX
�
6 is

equal to fX (�X).
(2) For each c 2 C0; let �ec be an enumeration of set E (Sc) : Then, there exist measurable

functions fc : Y jE(X)j�[0; 1)! Y jE(Sc)j such that the conditional distribution of � (�ec)
given �

�
�eX
�
is equal to fc

�
�
�
�eX
�
; �Sc

�
:

(3) For each p 2 P0; let �ep be an enumeration of set E (Sp) : Then, there exist measurable
functions fp : Y jE(X)j�[0; 1)! Y jE(Sp)j such that the conditional distribution of � (�ep)
given �

�
�eX
�
is equal to fp

�
�
�
�eX
�
; �Sp

�
:

6Here, and below we use notation � (�e) = (� (e1) ; � (e2) ; :::) for any �nite or in�nite tuple �e = (e1; e2; :::).
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(4) For each x = (c; p) 2 X0; there exist a measurable function fx : Y jE(X)j � Y jE(Sc)j �
Y jE(Sp)j�[0; 1)! Y such that the conditional distribution of � (x) given �

�
�eX
�
; � (�ec) ;

and � (�ep) is equal to fx
�
�
�
�eX
�
; � (�ec) ; � (�ep) ; �x

�
:

In general, functions fc (or fp; or fx) do not have to be equal for di¤erent values of c: In
order to make sure that the functions in fact are equal, we need to choose the enumerations
�ec more carefully. Let �p = (p1; p2; :::) be an enumeration of set PnP0: For each c 2 C0, let
�ec = ((c; p1) ; (c; p2) ; :::). Then, invariance implies that fc = fc0 for each c; c0 2 C0: Similarly,
an appropriate choice of �ep ensures that fp = fp0 and fx = fx0 for each p; p0 2 P0 and
x; x0 2 X0.
Finally, we can compose the functions thus obtained to get

f
�
�X ; �Sc ; �Sp ; �x

�
= fx

�
fX (�X) ; fc (fX (�X) ; �Sc) ; fp

�
fX (�X) ; �Sp

�
; �x
�
.

7.1.7. Example: Multiple customers and two goods. In the above two examples, the appli-
cation of the Borel decompositions always follows a careful choice of the enumeration of the
sets in the conditionally independent hierarchy. The enumerations have to be "consistent"
in a certain sense. The precise notion of "consistency" is di¢ cult to explain with elementary
de�nitions and we postpone it till Section 7.2. Here, we only observe that sometimes, we
may need to enumerate sets in more than one way. Going ahead of the formal statements,
we observe that di¤erent enumeration of set E (S) will correspond to di¤erent orientations
of shock �S:
We illustrate the role of multiple enumerations in the example from Section 5.5. Suppose

that X = C � fp1; p2g ; C is equal to the set of integers, and that the distribution ! is an
invariant distribution.
De�ne sets E = f(c; p) 2 X : c < 0g and X0 = XnE: As in the exchangeability case, X0

and X are isomorphic, and �nite sets Sc = f(c; p1) ; (c; p2)g are conditionally independent
fromX0nSc given E: Additionally, the joint distribution of pairs of variables � (Sc) and � (Sc0)
given � (E) are equal.
Let h : X ! X be an analogy-preserving bijection that exchanges the names of the goods:

for each (c; pi) ; h (c; pi) = (c; p�i), where �i 2 f1; 2g and �i 6= i: Notice that

h2 = id . (7.2)

Let �e be an enumeration of set E. Then, h (�e) = (h (e1) ; h (e2) ; :::) be another enumeration
of set E: Let � (�e) and � (h (�e)) be random jEj-tuples of elements of the outcome space Y .
De�ne a mapping ĥ : Y jEj ! Y jEj so that for each realization �;

ĥ�1 (� (�e)) = � (h (�e)) : (7.3)
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(Compare with equation (F.3) from appendix F.1.) The above equation characterizes map-
ping ĥ uniquely; moreover, ĥ is a bijection on Y jEj.
Let P = fid; q0g be the regular set of orientations from Section 6.6. Let I =

�
0; 1

2

�
and

I0 =
�
0; 1

2

�
; then, interval I is partitioned into intervals I0 and q0 (I0) : Recall that

q20 = id . (7.4)

Finally, �x customer c and an enumeration �s = (s1; s2) of set Sc:
By the Borel decomposition, there exists a function �X : I0 ! Y jEj such that the (un-

conditional) distribution of � (�e) is equal to �E (�0X), where �
0
X is chosen from the uniform

distribution on I0: De�ne function fX : I ! Y jEj by

fE (�X) =

(
�E (�X) ; if �X 2 I0,�

ĥ�1 � fE
� �
q�10 (�X)

�
; if �X 2 q0 (I0) .

Then, by the invariance of distribution !, the fact that h preserves analogies and that q0
preserves the measure, the (unconditional) distribution of � (�e) is equal to the distribution
of fE (�X) : Moreover,

fX � q0 = ĥ � fX :
By another application of the Borel decomposition, for each c, there exists a function

�c : Y
jEj � I0 ! Y 2 such that the conditional distribution of the ordered pair of variables

� (�s) = (� (s1) ; � (s2)) given � (�e) is equal to the distribution of �c (� (�e) ; �0c), where �
0
c is

chosen from the uniform distribution on I0. Let �c;1 and �c;2 denote, respectively, the �rst
and the second coordinate of function �c. De�ne function fc : Y jEj� I ! Y so that for each
�c

fc (� (�e) ; �c) =

(
�c;1 (� (�e) ; �c) if �c 2 I0,

�c;2

�
ĥ�1 � � (�e) ; q�10 (�c)

�
; if �c 2 q0 (I0) .

Consider a pair of random variables (more precisely, functions of random variables � (�e) and
�c): �

f0 (� (�e) ; �c) ; f0

�
ĥ (� (�e)) ; q0 (�c)

��
By the de�nition of function fc, de�nition (7.3), and equations (7.2) and (7.4); the pair is
equal to �

fc (� (�e) ; �c) ; fc

�
ĥ (� (�e)) ; q0 (�c)

��
(7.5)

=

(
(�c;1 (� (�e) ; �c) ; �c;2 (� (�e) ; �c)) ; if �c 2 I0,�

�c;2

�
ĥ � � (�e) ; q0 (�c)

�
; �c;1

�
ĥ � � (�e) ; q0 (�c)

��
; if �c 2 q0 (I0) .

The joint distribution of the variables (7.5) is equal to the conditional distribution of pair
� (�s) given � (�e) : Indeed, if �c 2 I0; the claim is immediate; if �c 2 q0 (I0), then the claim is
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implied by the invariance of distribution !, the fact that h preserves analogies and that q0
preserves measure. Notice that invariance implies that fc = fc0 for each c; c0 � 0:
Finally, we can "glue" functions fc and fX together. De�ne function f : I2 ! Y so that

f (�X ; �c) = fc (fX (�X) ; �c) :

The above remarks imply that the conditional distribution of variables

� (�s) = (f (�X ; �c) ; f (q0 (�X) ; q0 (�c))) ;

given �X is equal to the conditional distribution of � (�s) given � (�e) = fE (�X) : This fol-
lows immediately from the de�nitions of functions f0 and fE: Together with conditional
independencies, the last step leads to the demanded decomposition.

7.2. Representation of relational systems. It turns out that each relational system can
be equivalently described through an algebraic group. This is an important observation that
allows us to use the language and tools of group theory.
Recall that bijection g : X ! X preserves analogies (see Section 7.1.3), if each tuple

�x = (x1; :::; xk) is analogous to tuple

g � �x = (g (x1) ; :::; g (xk)) : (7.6)

Let G be the set of all bijections that preserve analogies. It is easy to check that G contains
identity mapping and G is closed with respect to taking inverses and compositions. In other
words, G is an algebraic group. We say that G acts on set X and we write G 7�! X:7

It turns out that the descriptions through analogy relations and through groups of bijec-
tions are equivalent.

Lemma 2. Any two tuples �x and �x0 are analogous if and only if there is a analogy-preserving
bijection g such that g � �x = �x0.

Proof. We show that if X is countable, and (X;�) is a relational system, then for any two
�nite and analogous tuples �x; �x0 2 Xk, there exists a relation-preserving bijection g such
that g � �x = �x0: The proof is a simple exercise in a back-and-forth method (Poizat (2000)).
It is enough to construct enumerations �z and �z0 of X such that �z(k) = �x and �z0(k) = �x0: Fix
a bijection � : X ! N. For each l � k; let zl = xl; and z0l = x0l: For each l > k; suppose that
zl0 and z0l0 for l

0 � k are constructed.

� If l is odd, choose zl+1 = argmin fi (z) : z 2 Xn fz1; :::; zlgg : By the extension axioms,
there exists z0l+1 such that tuples z

(l)^zl+1 and z0(l)^z0l+1 are analogous,

7For a more thorough introduction to group theory, see, for example, Lang (2002) or Dixon and Mortimer

(1996).
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� If l is even, choose z0l+1 = argmin fi (z) : z 2 Xn fz01; :::; z0lgg : By the extension ax-
ioms, there exists zl+1 such that tuples z(l)^zl+1 and z0(l)^z0l+1 are analogous.

�

The following table describes groups of permutations associated with examples of relational
systems used in this paper: For each set A; let �A denote the group of all bijections of set
A: Following the group-theoretic terminology, we refer to �A as the symmetric group on A:

Relational system Section Group Spanning family C�

Trivial 5.1 �X fx; x 2 Xg
M. customers, goods 2.1 �C � �P fSp; p 2 Pg ; fSc; c 2 Cg
M. goods, discon. customers 5.2 �P o (�C)P fSp; p 2 Pg ; Sp for p 2 P
Cust., goods, incomes, prices 5.3 �C � �P fSp; p 2 Pg ; fSc; c 2 Cg
Bundles of goods 5.4 �P fSp; p 2 Pg
M. customers, two goods 6.6 �C � �f0;1g fSc; c 2 Cg

Table 1. Examples of group actions.

Here, symbol "�" denotes the direct ("Cartesian") product of two groups, "o" denotes a
semidirect product, and (�C)

P is a direct product of P copies of group �C .8

Notice that notation (7.6) extends the action of group G onto �nite tuples of X: Similarly,
if we de�ne g � U = fg � x : x 2 Ug for some U � X; we can extend the group action onto
subsets of U: In the same vein, we can extend the group action to in�nite tuples, tuples of
sets, sets of sets, sets of tuples, etc.
Suppose that X0 is a subset of X and H is a subgroup of G (i.e., H � G and H:is a

group). Say that the action group H on X0 is isomorphic to the action of group G on X
if there exists an analogy-preserving bijection � : X ! X0 such that for each g 2 G and
h 2 H; � � g � ��1 2 H and ��1 � h � � 2 G: In particular, set X0 is isomorphic to X:
We are ready to state the representation theorem of the compact relational systems.

Theorem 4. Suppose that X is a countably in�nite, relational system (X;�) �nitely many
types of 1-tuples and it is 1

20
-compact. Let G be the group of all analogy-preserving bijections.

Then, there exists set X0 � X; a collection of concepts S0, a partition fE (S) ; S 2 S0g of
set X, and a subgroup H � G such that

(1) The action of group H on X0 is isomorphic to the action of group G on X:

8Group �P o (�C)P consists of all pairs (g; h) of bjections g 2 �P and functions h : P ! �C . The group

action on X = C � P is de�ned through the following formula:

(g; h) � (c; p) = (h (g � p) � c; g � p) :
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(2) Collection fE (S) ; S 2 S0g is a S0-hierarchy of conditionally independent sets.
(3) For each S 2 S0, each enumeration �e of set E (S), set fh � �e : h 2 H; h � S = Sg is

�nite.

The motivation behind the statements of the theorem follows from the examples and
discussion from the preceding section. The �rst claim ensures that set X0 is isomorphic to
X: Second, the Theorem �nds an appropriate hierarchy of conditional sets. Finally, there is a
consistent (with respect to the action of groupH) way of choosing �nitely many enumerations
of the elements of the hierarchy.
The goal of this section is to develop ideas used in the proof of Theorem 4. In the rest of

this section, we always assume that

 � 1

20
:

7.2.1. Multiply transitive group actions. Notice that all groups from Table 1 are either equal
to the symmetric groups on some in�nite set or the groups are (possibly, di¤erent kinds of)
products of such groups together with some �nite groups. As it turns out, this is not an
accident. In fact, our results show that the groups associated with 1

20
-compact relational

systems can be represented as (kinds of) products of in�nite groups of all permutations and
(possibly) some �nite groups.
It is useful to formalize some properties of symmetric groups. Say that a group action

is transitive, if for any x; x0 2 X; there is g 2 G so that g � x = x0: The group action is
n-transitive if each n-tuple of distinct elements of X can be mapped (via some g 2 G) into
any other n-tuple of distinct elements of X. The group action is highly transitive if it is
n-transitive for each n: Notice that each symmetric group is highly transitive.
It is convenient to de�ne slightly weaker versions of multiple transitivity. Say that B � X

is a block if for each g 2 G; ether g � B = B or g � B \ B = ?: An in�nite group action is
block n- (or highly) transitive, if there exists �nite block B � X such that the group action
on blocks G 7�! [B] is n- (or highly) transitive.
It turns out that �nite multiply transitive group actions are relatively rare. A collection of

results known together as the Classi�cation of Finite Simple Groups (CFSG) implies that all
�nite 2-transitive group actions belong to either one of eight well-understood in�nite families
and or to one of �nitely many special (so called sporadic) cases. The �rst two families are
jXj-, or (jXj � 2)-transitive, and the remaining 6 families are at most 3-transitive. All the
in�nite classes of �nite 2-transitive groups are listed in appendix B.1.2. Additionally, all
6-transitive �nite groups are either jXj-, or (jXj � 2)-transitive.

7.2.2. Types. All de�nitions stated in the language of analogy relations have simple coun-
terparts in the language of groups. As an example, we restate and expand the de�nition
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of a type. Let e and f be two arbitrary X-based objects: elements of X, �nite or in�nite
tuples of elements, subsets, tuples of subsets, etc: Let Gf = fg 2 G : g � f = fg be the set of
analogy preserving bijections that keep object f �xed. Then, Gf is a subgroup of G (i.e., a
group that is a subset of G). A relative type of e given f consists of all objects that can be
obtained from e by bijections g 2 Gf ,

[e; f ] = fg � e : g 2 Gfg

For example, the (unconditional) type of e is equal to the set of all all objects that are
obtained from e by bijections g 2 G, [e] = [e;?] : If f1; :::; fn is a list of objects, we often
write [e; f1; :::; fn] to denote the relative type of e with respect to the tuple f1^:::^fn:
It is useful to distinguish two types of relations between objects e and f : Say that e is

f-de�nable, if [e; f ] = feg ; e is f-algebraic, if j[e; f ]j <1: Of course, any f -de�nable object
is also f -algebraic. Moreover, if e is f -algebraic, and f is h-algebraic, then e is h-algebraic.

7.2.3. Concepts. Recall that a concept is a set S � X such that supx2S j[S;x]j < 1: In
particular, S is x-algebraic for each x 2 S; and there exists an uniform bound on the size of
the relative type [S;x] : A block is a concept S such that for each x 2 S; S- is x-de�nable.
Concept S is coin�nite, if for each other concept S 0 2 [S] ; S 0 is not S-algebraic, i.e.,

j[S;S 0]j =1: It turns out that each concept S is contained in a coin�nite concept S 0 in such
a way that S is S 0-algebraic (Lemma 36). The last property means that, for many purposes,
it is enough to work with coin�nite concepts and keep track of the associated (standard)
concepts.
Lemma 34 shows that each concept has a code: There is a tuple �x such that concept S

is �x-de�nable. Codes are useful whenever it is easier to analyze the group action on �nite
tuples rather than (possibly, in�nite) concepts. It is often important to control the length of
the code, i.e., the number of elements in tuple �x. In general, the length may depend on the
index of the concept. However, it turns out that each coin�nite concept S has a two-element
code: there is a tuple �x 2 X2 such that S is �x-de�nable (Lemma 34):
Let S be the set of all coin�nite concepts. Consider the action of group G on the set of

elements and coin�nite concepts, G 7�! X [ S. A concept C � X [ S under such group
action is de�ned in exactly the same way as the concept S � X under the group action
G 7�! X: Because C may contain elements of collection S, C is sometimes referred to as a
concept of concepts.

7.2.4. Compact group actions. Next, we restate and re�ne the de�nitions that underlie the
assumptions of our results. Take any group action G 7�! X: Finite set U � X is local if
for all tuples �x; �x0 � U such that the tuples have the same type, [�x] = [�x0] ; the two have
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the same relative type given U , [�x0;U ] = [�x;U ] : Also, say that set U is k-local if the relative
analogy is required to hold only for k-tuples �x; �x0 2 Uk.
The group action is  -compact, if it has �nitely many types of 1-tuples, and there exists

local U0 such that for each local U � U0 and x 2 X; there exists local U 0 � U; x such that

log jU 0j �  + log jU j : (7.7)

Lemma 37 shows that, if the group action G 7�! X is  -compact, then the group action
G 7�! X [ S satis�es two quasi-compact properties: for each k;

� there exists a constant ck such that for each �nite V; there exists k-local U � V such
that

log jU j �  log jV j+ ck; and (7.8)

� for each " > 0; x 2 X [ S, and �nite set V � [x] ; there exists k-local U � [x] such
that V � U and for each x0 2 [x] ; there exists a k-local U 0 � U; x0 so that

log jU 0j �  + "+ log jU j :

The two properties are related but logically independent.

7.2.5. Finitely many tuple types. Say that the group action has �nitely many tuple types,
if for each k; the set of types of k tuples of elements is �nite,

���[�x] : �x 2 Xk
	�� < 1: For

example, any highly transitive group action has �nitely many tuple types.
It turns out that  -compact group actions have �nitely many tuple types. The formal

argument is presented in Appendix B.2. Here, we give an intuition and illustrate the role of
compactness. For simplicity, suppose that the group action G 7�! X is transitive, i.e., there
is only one type of 1-tuples, X = [x]. On the other hand, suppose that there are in�nitely
many types of 2-tuples, jf[x^x0] : x; x0 2 Xgj =1:

Take any local set U: There exist x0 2 U and x1 =2 U such that the type of tuple x0^x1 is
not represented in U : for each x; x0 2 U; tuples x^x0 and x1^x1 are not analogous. Take any
local set V � U; x1: Consider a graph with nodes V and such that there exists a directed edge
from node x to node x0 if and only if x^x0 s analogous to x0^x1: Let k denote the out-degree
of node x 2 V (the number of edges going out of x) and l denote the in-degree of x: By
transitivity and because V is local, the out- and in-degrees do not depend on the choice of
x: By the choice of x0 and x1; there is no edge that goes out of a node in U into a (possibly,
di¤erent) node in U: Thus, the number of edges that go out of nodes in U and the number
of edges that go into the nodes of U can be bounded by

jU j k � (jV nU j) l and jU j l � (jV nU j) k:
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The two inequalities put together imply that jU j � jV nU j and jV j � 2 jU j : Because the
argument does not depend on the choice of local U; the latter inequality leads to a direct
contradiction with bound (7.7).
Additionally, we show that the group action G 7�! X [ S has �nitely many tuple types

(Lemma 35). The idea is to represent each co�nite concept by its two-element code (see
Section 7.2.3). Then, the number of types of n-tuples of coin�nite concepts can be bounded
by the number of types of 2n-tuples of elements of X. Because of the �nitely many tuple
types, it is easy to show that S must be countable.

7.2.6. Robustly exchangeable concepts. Let C � X [ S be an in�nite set of elements and/or
coin�nite concepts. Say that C is exchangeable if C is in�nite and the group actionGC 7�! C

is highly transitive. Say that C is robustly exchangeable, if C is exchangeable, and for each
�nite tuple �u � X[S; there exists �nite set C0 � C such that for each permutation g 2 GC;�u;

g � C0 = C0 and the group action GC;�u 7�! CnC0 is exchangeable. Here, robustness means
that the highly transitive group action GC 7�! C cannot be "broken" by a �nite tuple �u,
except for, possibly, some �nite set C0: We often refer to set C0 as the exceptional set.
It turns out that robustly exchangeable concepts can be found, in some sense, everywhere.

Lemma 3. Consider the group action G 7�! X [ S: For each tuple �x � X [ S and each
x 2 S such that the relative type [x; �x] is in�nite, there exists a robustly exchangeable concept
C such that Cn [x; �x] is �nite.

Below, we sketch an argument behind Lemma 3 and illustrate the role of compactness.
The Lemma is formally proved in Appendix D. The subsequent sketch can be omitted in the
�rst reading. From now on, we assume for simplicity that x; �x � X:

Splitting sequence. Here, we argue that there exists a tuple �w � �x and w 2 [x; �x] such
that the relative type [w; �w] has in�nite cardinality and the group action G �w 7�! [w; �w] is
block highly transitive (Lemma 41). We need a few preliminary observations. Because of
the CFSG, it is enough to show that the group action G �w 7�! [w; �w] is block 2-transitive.
Second, Lemma 25 shows that 2-transitivity follows if we show that the relative type [w; �w]
cannot be split: for all w0 2 [w; �w] ; set [w; �w] n [w0;w^ �w] is �nite. Finally, suppose that for
each tuple �w � �x and w 2 [x; �x] ; the relative type [w; �w] is in�nite and it can be split, i.e.,
there exists w0 2 [w; �w] such that set [w; �w] n [w0;w^ �w] is in�nite. In such a case, we show
that there exists a splitting sequence (Lemmas 26 and 27): a sequence s0; t0; s1; :::;2 [x] such
that for allm, if �sm = (s0; t0; :::; sm; tm) ; then for allm; k � 0 (a) sm+k+1; tm+k+1 2 [sm+1; �sm]
and (b) for any t such that tm^t 2 [sm^sm+1; �sm�1] ; t =2 [sm+1; �sm]. See Figure 1.
We show that the existence of the splitting sequence contradicts the  -compactness of

the group action G 7�! X (Lemma 28): Indeed, �nd a sequence of local sets Un such that
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Figure 1. Splitting sequence

Un � s0; :::; tn�1: Because of the compactness, and the fact that jfs0; :::; tngj � 2 (n+ 1), we
can pick local sets so that

lim sup
n!1

1

n
log jUnj � 2 : (7.9)

On the other hand, for each n; and each m � k � 1; tuples �sm�1^sm and �sm�1^tm are
analogous. Thus, there exists a permutation gn;m such that gn;m � �sm�1^sm = �sm�1^tm:

Because Un is local, we can assume that permutation gn;m keeps set Un �xed, gn;m 2 GUn :

Let An;n = fsn; tng ; and by backward induction on m; de�ne sets

An;m = fsmg [ An;m+1 [ gn;m � An;m+1 � Un:

The de�nition of the splitting sequence, together with the backward induction on m, shows
that An;m+1 � [sm+1; �sm] and sets An;m+1 and gn;m � An;m+1 are disjoint. Thus,

jUnj � jAn;0j � 2 jAn;1j � ::: � 2n+1;

which contracts (7.9).
Robust exchangeability. From now on, assume for simplicity that the group actionG �w 7�!
[w; �w] is highly transitive (rather than, more generally, block highly transitive). We show
that [w; �w] is robustly exchangeable.
It turns out that it is enough to show that there is no tuple �u � �w and element w0 2 [w; �w]

such that the relative type [w0; �u] and the set [w; �w] n [w0; �u] are in�nite (see Lemma 41). The
claim is based on the following counting argument. On the contrary, suppose that �u and w0

with such properties exists. Let V = [w0; �u] : Let Vn be an increasing sequence of subsets of
[w; �w] such that jVnj = 2n; and jVn \ V j = jVnnV j = n: Consider a sequence of local sets
Un � Vn such that (7.9) holds.
By de�nition, set V is �u-de�nable. Similarly, set V \ Un is (�u^Un)-de�nable: These two

observations yield a lower bound on the cardinality of the relative type of tuple �u given
�w^U :

j[�u; �w;Un]j � j[V \ Un; �w;Un]j :

Because the action G �w 7�! [w; �w] is highly transitive, and set Un is local, the group action
G �w^U 7�! [w; �w]\Un is also highly transitive. Therefore, the cardinality of the relative type
of set V \ Un given �w^Un is equal to the number of ways a set of cardinality jV \ Unj can
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be chosen from a cardinality j[w; �w] \ Unj : Hence,

j[�u; �w;Un]j �
 
j[w; �w] \ Unj
V \ Un

!
�
 
2n

n

!
� en logn;

where the last inequality comes from Stirling�s approximation.
Finally, suppose that the length of tuple �u is k: Then,

1

n
log jUnj �

1

k

1

n
log jj[�u;Un]jj �

1

nk
log j[�u; �w;Un]j �

log n

k
!1 when n!1;

which contradicts (7.8).
Robustly exchangeable concepts. In the last part of this subsection, we construct a
robustly exchangeable concept C such that Cn [x; �x] is �nite.
Let D = [w; �w] : The above argument implies that, for any set D0 that has the same type

as D; either the sets D0nD and DnD0 are �nite or the intersection between D and D0 is
�nite. Indeed, notice that D0 = [w0; �w0] for some w0 and tuple �w0: Then, if DnD0 and D \D0

is in�nite, then there exists z 2 DnD0 such that the sets [z; �w; �w0] � DnD0 and Dn [z; �w; �w0]
are in�nite. But this contradicts the robust exchangeability of [w; �w] :
Say that set C is complete, if for each C 0 of the same type as C but C 0 6= C; the intersection

of C and C 0 is �nite. Lemma 42 shows that there exists a complete and robustly exchangeable
set C � D such that jCnDj <1. The idea is to de�ne C as the union of all D0s such that
D0nD and DnD0 are �nite. An elementary argument based on Lemma 24 shows that set
CnD must be �nite.
Finally, suppose that C � X is a complete and robustly exchangeable set C: Lemma 43

shows that set C must be a concept.

7.2.7. Correlation and independence. Consider now two robustly exchangeable concepts C
and C 0 and the action of group GC;C0 that �xes both concepts: Then, the action of GC;C0

on each of the two concepts is highly transitive except for possibly �nite exceptional set.
(Indeed, because concept C 0 has a code �x0, C 0 is �x�-de�nable, which implies that G�x � GC0 :

Because C is robustly exchangeable, there exists a �nite set C0 � C such that the action
of G�x0 \ GC � GC;C0 is highly transitive on CnC0.) For simplicity, we assume that the
exceptional sets are empty and that group actions GC;C0 7�! C and GC;C0 7�! C 0 are
highly transitive. In particular, for any two tuples �x; �y 2 C of equal length, there exists a
permutation g 2 GC;C0 such that g � �x = �y:
We are interested in the joint action of GC;C0on the union of the two concepts. The

di¢ culty is that permutations over one of the concepts may depend on the permutations
over the other concept. There are two extreme cases: On the one hand, permutations on
the two concepts might be independent of each other. Precisely, for each tuple �x � X [ S;
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say that the joint action of GC;C0 is �x-independent if there are exceptional sets �nite sets
C0 � C and C 00 � C 0 such that for each two tuples �u; �v � CnC0 of equal length, and any two
tuples �u0; �v0 � CnC 00 of equal length, there exists a permutation g 2 G�x \ GC;C0 such that
simultaneously g � �u = �v and g � �u = �v: In other words, apart from the exceptional sets, the
permutations on C and C 0 can be chosen independently. The two concepts are independent,
if they are �x-independent for all tuples �x:
On the other hand, the two actions can be perfectly correlated. Formally, for each tuple

�x � X[S; the joint action of GC;C0 is �x-correlated, if there are �nite exceptional sets C0 � C

and C 00 � C 0 and a correlating function j : CnC0 ! C 0nC 00 such that for each permutation
g 2 G�x \ GC;C0 and each tuple �u 2 C, and each g 2 GC;C0 ; g � j (�u) = j (g � �u) : That means
that the permutation on concept C uniquely determines the permutation of C 0: The two
concepts are �x-correlated, if they are �x-correlated for all tuples �x:
At �rst sight, one can imagine that there is a range of imperfect correlations in which

permutations on one concept limit, but not determine, permutations of the other concept.
However, it turns out that, for each tuple �x; any two robustly exchangeable concepts can be
either �x-independent or �x-correlated (Lemma 39). The argument is elementary, i.e., it does
not rely on any compactness assumptions.
Additionally, if the group action is  -compact for any  < 1; then any two robust

exchangeable concepts are either independent or correlated. The argument relies on the
counting argument from Section 7.2.6: Notice that if the two concepts are �x-independent
and �x^x-correlated for some tuple �x and x, then the correlating function is de�ned by x
given �x: Because the number of the choices of the correlating functions is proportional to n!
where n is the number of elements in the intersection of C with some local U; the counting
argument would lead to a contradiction with compactness.

7.2.8. Coordinate system. The discussion in Sections 7.2.6 and 7.2.7 focuses on either indi-
vidual robustly exchangeable concepts or the relationships between pairs of such concepts.
Next, we take a macroscopic view to describe the properties of the collection of all robustly
exchangeable concepts. Observe that the correlation of robustly exchangeable concepts is
transitive: if C is correlated with C 0 and C 0 is correlated with C 00; then C and C 00 are corre-
lated. Thus, we can divide all robustly exchangeable concepts into correlation classes, i.e.,
collections of concepts such that all concepts from the same collection are correlated and all
concepts from two di¤erent collections are independent. Because of the above discussion,
any two concepts from two di¤erent classes are independent. Lemma 4 shows that each
correlation class contains the "largest" member:
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Lemma 4. There exists a family C� of mutually disjoint and independent concepts such that
each concept C is correlated with the unique concept C 0 2 C� and the correlating function
j : C ! C 0 is such that for each x 2 C; x � j (x).

The proof is constructive. The idea is to use the correlating functions to construct equiv-
alence classes on the elements of concepts in a correlation class B: Take any C;C 0 2 B:
Informally, say that x 2 C and x0 2 C 0 are directly connected if x0 = j (x), where j is the
correlating function between C and C 0: Say that x and x0 are connected if there exists a
�nite path of elements x = x0; :::; xm = x0 such that each consecutive elements are directly
connected. We show that the relation of being connected is a relation of equivalence, that
the union of all connected elements is a coin�nite concept, and that the collection of such a
union forms a robustly exchangeable concept CB:
De�ne C� as the family of all representative "largest" concepts CB for all correlation classes

B: Let S� =
S
C� � X [S be the union of all concepts in C�. By construction, the concepts

in C� are mutually independent, and each robustly exchangeable concept is correlated with
exactly one concept in C�: Additionally, we can show that all concepts in C� are disjoint. (If
not, and there are concepts C and C 0 with a non-empty intersection C \C 0, then one shows
that at least one of the concepts C or C 0 cannot be the largest member of its correlation
class.) We refer to C� as the spanning family of concepts.
Concepts in C� can be interpreted as "dimensions" of the relational system and elements of

S� as "coordinates." Families C� corresponding to the examples from this paper are described
in Table 1. For example, in the multiple customers and goods case (Section 2.1), family C�
contains two elements: the concept of all concepts of customers and the concept of concepts
of goods. As another example, consider the multiple goods with disconnected customers
case from Section 5.2. There are in�nitely many members of the spanning family: a concept
of the concepts of goods and all concepts of goods. Finally, in the multiple customers and
two goods case from Section 5.5, family C� contains only one element: the concept of the
concepts of customers.
Hierarchy of concepts. The elements of S� and C� can be partially ordered by inclusion.
More precisely, notice that each object e 2 X [S� [ C� can be associated with its S�-cover :

L (e) = fx 2 S� : e 6= x and e � xg :

For any two concepts C;C 0 2 C� such that the intersection of L (C) and C 0 is not empty, say
that C is included in C 0, write C � C 0: One shows that the relation "�" is a proper partial
order on the spanning family C�.
In the multiple customers and goods case from Section 2.1, neither of the two elements of

family C� is included in the other. In the multiple goods with disconnected customers case
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from Section 5.2, each concept of goods is included in the concept of concepts of goods. In
general, the partial order may lead to chains of concepts in C� with two or more elements.
Coordinatewise description. We interpret the cover L (e) as a "coordinatewise" descrip-
tion of the object e: The next result establishes three properties of the cover:

Lemma 5. 1. For each e; L (e) is �nite. 2. For each x 2 C 2 C�; L (x) = L (C) : 3. For
each L � S�; sets fx : L (x) = Lg and fC : L (C) = Lg are �nite.

The �rst property means that the "coordinatewise" description is �nite; the second, that
the description of concept C is the same as its elements; and the third that the "coordi-
natewise" descriptions L (:) can be used to almost uniquely identify elements x or concepts
C 2 C�. Here, "almost" means "up to �nitely many other candidates." Together, the Lemma
gives meaning to our interpretation of C� as "coordinates" and L (:) as the coordinate de-
scription of object e:
In the examples from Sections 2.1 and 5.2, each element x 2 X has two coordinates: a

concept of a good and a concept of a customer. The two coordinates determine x uniquely.
We sketch the argument behind Lemma 5. First, each cover is �nite. This follows from

the fact that there are �nitely many types of concepts and that, by a de�nition of a concept,
each element can be contained in at most �nitely many concepts of the same type.
Second, the cover of each S 2 C 2 C� is the same as the cover of C; L (S) = L (C) : If not,

then there is S 0 2 L (S) ; but not S 0 2 L (C) : It is easy to show that S 0 is S-algebraic and
that the relative type [S 0;C] is in�nite. Using these two facts and the robust exchangeability
of C; we show that there is a robustly exchangeable concept C 0 � [S 0;C] such that C 0 is
correlated with C. Because C 0 consists of concepts S 0 that contain concepts S 2 C; it must
be that C 0 is "larger" than C in the sense de�ned above. However, that contradicts the
choice of C as the largest member of its correlation class.
The proof of the third property relies on Lemma 3 stated above in Section 7.2.6: We need

to show that if e is an element of X or C�, then e is L (e)-algebraic. Instead, if the relative
type of e given L (e) were in�nite, then one could �nd a robustly exchangeable concept C
that consists of elements of type e and that would be independent from concepts that contain
the elements of cover L (e) : By taking the largest member C 0 of the correlation class of C;
we would show that there exists S 0 2 C 0 2 C� such that e 2 S 0 and S =2 L (e) : That would
yield a contradiction with the de�nition of the cover L (e).
Coordinate labelling �. Notice that each concept C 2 C� is countable (as a subset of
countable set S�). Because all concepts in the spanning family C� are disjoint, we can �nd
a map � : S� ! Z such that for each C 2 C�; �jC is a bijection between C and the set of
integers Z: We interpret � as a labeling of elements of S�:



36 MARCIN P ¾ESKI

We use the labeling to clarify the meaning of independence in the spanning family C�.
Lemma 6 below shows that, for each concept C 2 C� and elements s0; s1 2 C; there exists a
permutation g with the following properties:

� g � s0 = s1; g � s1 = s0,
� g � s = s for each s 2 S� such that L (s) \ fs0; s1g = ?. In particular, g � s = s for
each s 2 Cn fs0; s1g :

� � (s) = � (g � s) for each s 2 S�n fs0; s1g :
Any permutation of such form is called a permutation of (s0; s1)-type.

Lemma 6. For each concept C 2 C�; any two elements s; s0 2 C; there exists a permutation
of (s; s0)-type.

The idea behind Lemma 6 is to use the robust exchangeability and mutual independence
of concepts in C�:
Positive and negative coordinates. Theorem 4 claims the existence of a subset X0 of
space X such that X0 is isomorphic to X: Here, we show how X0 s constructed:
The construction uses labeling � to divide coordinates into positive and negative. Say

that coordinate S 2 S� is positive if S and each coordinate S 0 2 L (S) has a non-negative
label, � (S) ; � (S 0) � 0: Let S�0 � S� be the collection of all positive coordinates S 2 S�:
De�ne

X0 = fx 2 X : L (x) � S�0g ; and S0 =
n\

L : L � S�0
o
:

Here, set X0 consists of all elements of X that have positive coordinates. Set S0 consists of
intersections of positive coordinates; because each intersection of concepts is a concept, set
S0 consists of concepts that are contained only in the positive coordinates. By convention,
we take ? 2 S�0 ;

T
? = X; which implies that X 2 S0.

Say that permutation h preserves negative coordinates if � (S) = � (h � S) for all S 2
S�nS�0 : Let Gnc � G be a subgroup of permutations that preserve negative coordinates.
Then, Gnc � GX0 :

Lemma 7. There exists a bijection � : X ! X0 such that for any h 2 Gnc; ��1 � h �� 2 G;
and for any g 2 G; � � g � ��1 2 G: In particular, � preserves relations.

That means that the two group actions G 7�! X and Gnc 7�! X0 are isomorphic. Ac-
cording to the Lemma, it is possible to go back and forth between isomorphic group actions
without losing any information. As an important consequence, invariant distributions under
each of the group actions correspond to invariant distributions under the other.
Mapping � from Lemma 7 is constructed in steps: Fix a bijection  : Z ! N that maps

integers into natural numbers (we assume that N includes 0). Suppose that A0 � A1 � :::
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is an increasing sequence of integers such that
S
Ai � Z: Let VA � X [ S� [ C� be the set

of objects e such that for each � (L (e)) � A: Using permutations of (s0; s1)-type (Lemma
6), we construct a sequence of permutations g0; g1;... such that for each i; gi (VAi) � V(Ai);

and gijVAi = gi+1jVAi : The limit of such mappings forms the required bijection �. Because
each permutation gi preserves relations, the limit � preserves relations as well. Finally, the
isomorphy between G 7�! X and Gnc 7�! X0 follows from another application of Lemma 6.
Conditional independence. Recall the notion of a hierarchy of conditionally independent
sets from Section 7.1.5. Here, we describe how such a hierarchy can be constructed.
Notice that collection S0 is partially ordered by inclusion and is closed with respect to �nite

intersections. For each x 2 X; let minx2S;S\S0 S denote the smallest element of collection S0
that contains x: Notice that minx2S;S\S0 S is equal to minx2S;S2S0 x =

T
(L (x) \ S�0 ) : For

each S 2 S0; de�ne the set of elements x such that S is the smallest member of collection
S0 that includes x;

E (S) = fx 2 X : minx�S;S2S0 x = Sg :
It is easy to see that fE (S) : S 2 S0g is a partition of set X: In order to shorten the notation,
for any collection of sets L � S0, let E (L) =

[
S2L

E (S) :

Using permutations of (s0; s1)-type (Lemma 6), we show that

Lemma 8. E (:) is a S0-hierarchy of conditionally independent sets.

Finite orientations. As in the examples, we associate elements S of family S0; or, more
precisely, sets E (S) with shocks � 2 U : In order to construct orientations, we need more
precise information about sets E (S) : Recall the multiple customers and two product example
discussed in Section 7.1.7. There, the orientations of set E = E (X) and sets Sc = E (Sc)

for positive Sc are constructed with the help of a certain permutation h such that h2 = id
and that h � (c; p1) = (c; p2) : It turns out that such as construction can be generalized.

Lemma 9. There exists subgroup H � Gnc such that H 7�! X0 and Gnc 7�! X0 are
isomorphic and for each S 2 S0; the action of the S-�xing subgroup HS on set E (S) is
�nite,

���hjE(S) : h 2 HS

	�� <1:

Lemma 9 is proven in three steps. In Appendices E.6 and E.7, we develop tools that
we use later to ensure two required properties of H: The construction of H is presented in
Appendix E.8.
This ends the proof of Theorem 4.

7.3. Decomposition of uncertainty. In the last part of this section, we show how The-
orem 4 together with applications of tools developed in Section 7.1 lead to the proof of the
necessity part of Theorem 3.
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7.3.1. System of orientations. We use Theorem 4 to construct a system of orientations on set
X0. We start with some notation. There are �nitely many types t of concepts in collection
S0. For each type t, �x a representative St 2 t\ S0 and �x an enumeration �et of set E (St) :
Let H t =

�
hjE(St) : h 2 HSt

	
be the �nite set of permutation of set E (St). For each concept

S 2 t \ S0; �x a permutation hS such that hS � St = S and let �eS = hS � �e:
Second, we construct orientations. Partition the interval I = [0; 1) into equal length

subintervals I�e; indexed with enumerations �e 2 H t. For each h 2 H t; let ph be the measure-
preserving bijection on I such that for each subinterval Ih0 ; ph (Ih0) = Ih0h and ph is an a¢ ne
monotonic shift on each of the subintervals.9 Then, it is easy to check that for each h and
h0;

phh0 = ph0 � ph; (7.10)

which implies that Qt = fph; h 2 HSg is a �nite regular set of orientations (i.e., it contains
identity, it is closed with respect to compositions, and fph (Iid) : h 2 H tg is a partition of
the interval I). Notice that equation (7.10) ensures that the structure of the group H t is
replicated by the structure of compositions in Qt:

Third, let U = f�S : S 2 S0g be a collection of i.i.d. random shocks associated with
concepts in S0. Let Q�S = Q[S] be the set of orientations of shock �S and let O =[

S2S0
f�Sg �Q�S be the space of orientations of shocks in U .

Fourth, we extend the action of group H on space O. For each permutation h 2 H; let
q (h; S) = h�1h�ShhSjE(St) 2 H t be the restriction of permutation h�1h�ShhS 2 HSt to set E (St) :
Then, for any two permutations h and h0;

q (h0h; S) =
�
h�1h0h�Sh

0hhS
�
jE(St) =

��
h�1h0h�Sh

0hh�S
� �
h�1h�ShhS

��
jE(St) (7.11)

= q (h0; h � S) q (h; S)

For each orientation (�S; p) ; de�ne

h � (�S; p) =
�
�h�S; p � pq(h;S)

�
: (7.12)

We show that equation (7.12) de�nes a system of orientation. Indeed, because of (7.10)
and (7.11), for any two permutations h and h0;

h0h � (�S; p) = h0 (h � (�S; p))

which means that equation (7.12) extends the action of group H on the set of orientations
O: By the equivalence between group actions and relational systems (Theorem 2), X0[O is
an extension of the relational system on X0. Also, if �o is a tuple of orientations of the same
concept, and tuple �o0 is analogous to �o, then all elements of tuple �o0 are also orientations of

9For each h and h0; there exists b such that for each x 2 Ih; then ph (x) = x+ b.
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the same concept. The last two properties of a system of orientation follow directly from
(7.12).
Finally, we show that orientations of shocks �S can be "tied" with enumerations of set

E (S). Let
�E (S) = [�eS;S] =

�
h � �et : h 2 H and h � St = S

	
be a �nite set of orientations. We de�ne a mapping � : O !

[
S2S0

�E (S) : for each

orientation o = (�S; ph) ; let

� (o) := hSh � �et. (7.13)

Then, for each permutation g 2 H;

� (g � o) = hg�Sq (g; S)h � �et = hg�Sh
�1
g�SghSh � �et

= gghSh � �et = g � � (o) :

In other words, the movement of orientation o under any permutation g is traced by the
movement of enumeration � (o) :
Then, set �E (S) is a �nite set of enumerations of E (S).

7.3.2. Invariant distribution !�. Let Z =
[

t
Y jE(St)j; where t varies over types of concepts in

collection S0. For each mapping � : X ! Y; and each (�nite or in�nite) tuple �e = (e1; e2; :::)
of elements of X, let � (�e) = (� (e1) ; � (e2) ; :::) be a tuple of elements of Y: De�ne a mapping
O (�) : O ! Z so that for each o 2 O,

O (�) (o) = � (� (o)) ,

where � is mapping that associated orientations of shocks with the enumerations of associated
sets. Because the collection of sets fE (S) : S 2 S0g is a partition of X; there is a one-to-one
relationship between mappings � and O (�).
Suppose that ! 2 �(Y )X is an invariant distribution over �s. Let !� 2 �

�
ZO
�
be the

associated distribution over mappings O (�): for any measurable subset E � Y X ; let

!� (O (E)) = ! (E) .

Because mapping O is one-to-one, there is a one-to-one relationship between distributions !
and !�. Moreover, distribution !� is invariant with respect to the action of group H :

Recall that the collection of sets fE (S) : S 2 S0g is a hierarchy of conditionally indepen-
dent sets. Together with Lemma 1, this implies that distribution !� exhibits the following
hierarchy of conditional independencies:

CI: For each o 2 OS; � (o) is conditionally independent fromn
� (o0) ; o0 2

[
fOS0 : S

0 2 S; S 0nS 6= ?g
o
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given n
� (o0) ; o0 2

[
fOS0 : S

0 2 S; S 0 ! Sg
o
:

Let �S 2 � [0; 1)S be the product of uniform distributions. A realization from �S is denoted
by � 2 [0; 1)S : For each tuple of orientations �o 2 On; let �o (�) = (q1 (� (S1)) ; :::; qn (� (Sn))) :

Lemma 10. For all S 2 S and all orientations o 2 OS; there exist tuples of orientations
�oo such that if o and o0 are analogous, then o^�oo and o0^�oo

0
are analogous, and for all H-

invariant distribution !� 2 �
�
ZO
�
that satis�es CI; for all t 2 T; some ot 2 OS and S 2 t,

there exist
�
ot; �oo

t�
-symmetric functions f t such that ! is equal to the joint distribution of

f t (o^�oo (u)) ; for o 2 OS; S 2 t; and t 2 T:

The proof is by induction on the hierarchy of conditional independencies. At each level
of the hierarchy, we apply a version of the Borel decomposition (Lemma 48 from Appendix
F.1) to decompose variable � (o) for some orientation o = (�S; p) into an independent shock
�S as well as the realizations of variables � (o0) for orientations o0 of shocks that are higher
in the hierarchy. We combine function f together with the outcomes of the decompositions
of higher-level orientations to �nd an symmetric function f t. The proof of the Lemma can
be found in Appendix F.2.

7.3.3. Proof of necessity part of Theorem 3. We use the results and notation from the above
section. Let ! be an invariant distribution and let !� be de�ned as in the previous subsection.
Let V be the set of types of elements of X0: For each type v; �x a representative xv 2 t\X0.
Because the collection of sets fE (S) : S 2 S0g is a partition of X; there exists a unique
Sv 2 S0 such that xv 2 E (Sv). Fix an orientation ov of the shock associated with concept
Sv: Let �ov = �oo

v
be the tuple of orientations from Lemma 10

Let tv be the type of concept Sv: . Let f0 = f t
v
: [0; 1)n

tv

! Y jE(St
v
)j be a function from

Lemma 10.
Recall that � (ov) is an enumeration of set E (Sv). Let mv be the position in that enumer-

ation occupied by xv. De�ne function

f v (u1; :::; untv ) =
�
f t

v

(u1; :::; untv )
�
mv :

We show that function f v is (xv; ov^�ov)-symmetric. Indeed, suppose that tuple xv^o^�o is
analogous to xv^ov^�ov: Then, the tuple of orientations o^�o is analogous to ov^�ov. By Lemma
10,

O (�) (�ov) = f t
v

(ov^�ov (u)) and O (�) (�o) = f t
v

(o^�o (u))
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given a realization of shocks u. Because (� (o))mv = (� (ov))mv = xv and because of the
de�nition of operator O (:), it must be that�

f t
v

(ov^�ov (u))
�
mv =

�
f t

v

(o^�o (u))
�
mv .

For each x 2 v \X0; �nd the tuple of orientations �ox that is analogous to tuple ov^�ov. It
follows from Lemma 10 that the joint distribution of

f v (�ox (u)) for x 2 v 2 V

is equal to !:

8. Counterexample

Here, we present an example of a 1-compact relational system with �nitely many types of
1-tuples that admits invariant distributions without �nite decomposition. This shows that
the constant 1

20
in the statement of Theorem 1 cannot be increased too much.

Assume that X is a collection of �nite subsets of the set of natural numbers N including
the empty set ?: Thus, X is countable. For each n 2 N, de�ne a binary relation on pairs
(x; x0) 2 X :

xRnx
0 if either n 2 x \ x0; or n =2 x [ x0:

Let � be the analogy relation induced by binary relations fRn; n 2 Ng : In Appendix I, we
show that the relational system is 1-compact.

Lemma 11. For each local U � X, and each x; there exists local U 0 � U; x such that

jU 0j � 2 jU j :

Suppose that U = f�n; n 2 Ng is a collection of i.i.d. random shocks uniformly distributed
on the interval [0; 1] : For each x 2 [0; 1], de�ne

� (x) :=
X

n2x

1

2n

�
�n �

1

2

�
+
X

n=2x

1

2n

�
1� �n �

1

2

�
:

It is easy to check that the joint distribution ! of variables � (x) is stationary. Notice that
for any x; x0; the correlation between variables � (x) and � (x0) is equal to

E! [� (x) � (x
0)] =

X
n=2x4x0

1

2n+2
�
X

n=2x4x0
1

2n+2
:

In particular, E! [� (x) � (x0)] = E! [� (y) � (y
0)] if and only if x4 x0 = y4 y0: Because there

are in�nitely many sets x4 x0; there are in�nitely many correlations.
We show that ! has no �nite decomposition in the sense of Theorem 1. Indeed, sup-

pose that there is such a decomposition with assignment functions k : X ! f1; :::; k0g and
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n : X ! Um0 for some �nite k0;m0: For each pair of tuples (x1; x2) and (x01; x
0
2) , write

(x1; x2)R (x01; x02) if

k (x1) = k (x01) ; k (x1) = k (x01) , and for each m;m
0 � m0

nm (x1) = nm0 (x2) if and only if nm (x01) = nm0 (x02) :

Then, R is an equivalence relation on X2: Because all shocks are i.i.d., all the variables
associated with R-equivalent tuples (x1; x2) and (x01; x

0
2) have the same correlations,

E [� (x1) � (x2)] = E [� (x01) � (x
0
2)] ;

where E is the expectation operator.
Because k0;m0 < 1; R has �nitely many classes of equivalence: In particular, there

are �nitely many values of correlations between variables � (x1) ; and � (x2) for all pairs of
x1; x2 2 X: Contradiction.
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Appendix A. Concepts in the multiple customers and goods case

Recall the example from Section 2.1. There is an alternative way of characterizing the
relational system (X;�), where X = C � P: Let �C be the set of all permutations (i.e.,
bijections) of C: Similarly, let �P be the set of all permutations of P: Let G = �C��P : The
set G is a group of permutations of set X: As it is discussed in the beginning of Secton 7.2,
there is a natural extension of the action of group G on the tuples of elements of X: Then,
two tuples �x and �x0 are analogous if and only if there is g 2 G such that g � �x = �x0.
Using the group of permutations G; we can restate the de�nition of the concept. For each

set S � X and each permutation g 2 G; let g � S = fg � x : x 2 Sg be the permutation of
set S: Then, sets S and S 0 are analogous relative to x if and only if there exists permutation
g 2 G so that g �x = x and g �S = S 0: In particular, set S is a concept if there exists iS <1
so that for each x 2 S; jfg � S : g 2 G and g � x = xgj � iS:

The rest of the proof is divided into four steps. Suppose that S is a concept.

(1) If there are (c; p) ; (c0; p) 2 S such that c 6= c0; then Sp � S: Indeed, let CS =
fc0 : (c0; p) 2 Sg : Then, CSn fcg is not empty. We show that if CnCS is not empty,
then S cannot be a concept. Then, either CSn fcg or CnCS has in�nitely many
elements. We consider only the former case (the latter is similar). Fix c00 2 CnCS:
For each c0 2 CSn fcg ; �nd a permutation �c0 : C ! C such that � (c0) = c00;

� (c00) = � (c0) and such that �jCnfc0;c00g = id jCnfc0;c00g: Let idP 2 �P be the identity
permutation of the set of goods, and let gc0 = (�c0 ; idP ) for each c0 2 CSn fcg : Then,
for each c00; c

0
1 2 CSn fcg st. c00 6= c01; �c00 (CS) 6= �c01 (CS), and gc00 (S) 6= gc01 (S) :

Because set CSn fcg has in�nitely many elements, there are in�nitely many di¤erent
sets g � S such that (c; p) 2 g � S: Thus, S is not a concept.

(2) It follows that if Sc; Sc0 � S for some c 6= c0; then for each p; Sp � S; which implies
that S = X:

(3) In a similar way, we show that if there are (c; p) ; (c; p0) 2 S such that p 6= p0; then
Sp � S; and if if Sp; Sp0 � S for some p 6= p0; then S = X:

(4) Suppose that (c; p) ; (c0; p0) 2 S for some c 6= c0 and p 6= p0: We show that S = X: If
not, then by the above steps, either Sc\S = f(c; p)g ; or Sc0 \S = f(c0; p0)g :W.l.o.g.
suppose that the latter. For each c00 6= c; c0; �nd permutation gc00 = (�c00 ; idP ) 2 G

such that �c00 (c0) = �c00 (c
00) ; �c00 (c

00) = �c00 (c
0) ; and

The proof of the second part of the Lemma is similar.
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Appendix B. Group actions

B.1. Group theory. We review some basic notation, de�nitions, and results from group
theory (for details, see Lang (2002) and Dixon and Mortimer (1996)). Suppose that G 7�! X

is a group action. The cardinality of group G is called the order of G; and the cardinality
of X is called the degree of G 7�! X.
For each set X; the set �(X) of all permutations on X is a group, and it is called a

symmetric group of X: If X is �nite and jXj > 1, there exists a unique subgroup A (X) �
�(X) with index j[� (X) : A (X)]j = 2: Group A (X) is called an alternating group of X:
(Alternating groups can also be de�ned for in�nite sets X.) When X = f1; :::; ng ; then we
write �n and An; instead of, respectively, �(X) and A (X) :
Group action G 7�! X is transitive, if for any x; x0 2 X; there is g 2 G such that g �x = x0:

Group action G 7�! X is k-transitive, if for any U � X; if jU j � k�1; then Gx:x2U 7�! XnU
is transitive. Group action G 7�! X is highly transitive, if it is k-transitive for each k: The
symmetric group is highly transitive, and the alternating group is (jXj � 2)-transitive.

B.1.1. Index. For each subgroup H � G; for each g 2 G; set gH := fgh : h 2 Hg is called a
coset ofH: Di¤erent cosets are disjoint, and the (possibly in�nite) cardinality of the collection
of cosets is called an index of H in G: [G : H] := jfgH : g 2 Ggj : The next result presents
some bounds on indices.

Lemma 12. If J � H � G are groups, then [G : J ] = [G : H] [H : J ] : If H1; H2 � G are
groups, then [G : H1 \H2] � [G : H1] [G : H2] ; and [H1 : H1 \H2] � [G : H2] :

Lemma 13 (Dixon and Mortimer (1996)). If X is �nite, G 7�! X is alternating or symmet-
ric, and H � G is a subgroup such that [G : H] < jXj ; then H is alternating or symmetric.
If X is in�nite, G 7�! X is highly transitive, and H � G is a subgroup with a �nite index,
[G : H] <1; then H is highly transitive.

B.1.2. Classi�cation of �nite simple groups. The entire list of �nite and 2-transitive groups
can be derived from the powerful result known as the Classi�cation of Finite Simple Groups
(see Dixon and Mortimer (1996)). There are eight in�nite families of such groups:

(1) symmetric group �n for each n;
(2) alternating group An for each n;
(3) a¢ ne group A�Ld (b) and some of its subgroups; where d 2 N; and b = pn is an nth

power of a prime number p; and the degree is equal to pnd;
(4) projective groups PSLd (b), where d 2 N; and b = pn is an nth power of a prime p;

and the degree is equal to pnd;
(5) unitary groups PSU3 (b), where b = pn is an nth power of a prime p, and the degree

is equal to b3 + 1;
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(6) symplectic groups SP2m (2), where m 2 N: The symplectic group has two actions
with degrees equal to 2m�1 (2m + 1), and 2m�1 (2m � 1) ;

(7) Suzuki groups Sz (b), with b = 22m+1 and the degree equal to b2 + 1;
(8) Ree groups R (b) with b = 32m+1 and the degree equal to b3 + 1:

Families 3-6 are also called classical Lie groups. Additionally, there are �nitely many of
the so-called sporadic groups that do not belong to any of the in�nite families. Only the
alternating and the symmetric group are 6-transitive.

Lemma 14. Suppose that X0  X1 and G is a group such that GX0 7�! X0 and G 7�! X1

are 2-transitive, and they belong to the same family 3-8. Then, jX1j � 2 jX0j :

Proof. The result directly follows from the characterization of degree in cases 7-8. In cases
3-5, the result follows from the fact that if G has degree pn and H is a subgroup of G
that belongs to the same family 3-5, then H�s degree is equal to pn

0
for some n0 < n (see

?). Finally, in case 6, the result follows from the fact that the group with degree equal to
2m�1 (2m � 1) is not a subgroup of the group with the degree equal to 2m�1 (2m + 1). �

Lemma 15. Suppose that a sequence X1  X2  :: is such that

lim
n!1

log jXnj
n

<
1

10
;

and Gn 7�! Xn is 2-transitive for each n10: Then, G 7�! X is highly transitive.

Proof. It is enough to show that for each n; there exists n0 > n such that GXn0 7�! Xn0 is
symmetric or alternating. Suppose not, and that there exists n� such that for each n > n�;

GXn 7�! Xn is 2-transitive, but not symmetric nor alternating. We can assume that n is
large enough so that GXn 7�! Xn does not belong to the sporadic cases.
Because 1

10
< 1

9
; there exist n > n� such that jXn+9j < 2 jXnj : On the other hand, there

exist n � n0 < n1 � n + 9 such that GXno 7�! Xn0 and GXn1
7�! Xn1 belong to the same

in�nite class of 2-transitive actions. By Lemma 14, 2 jXnj � 2 jXn0j � jXn1j � jXn+9j :
Contradiction. �

Lemma 16. Suppose that X = X0[X1 is a union of disjoint �nite sets X0; X1 and G 7�! X

is a group action such that for each i; jXij � 8; G � Xi = Xi and for each �xi 2 (Xi)
6 ;

G�xi 7�! X�i is 6-transitive. Then, for each i; each enumeration �x�i of Xi; G�x�i
7�! X�i is

alternating or symmetric.

Proof. For each i; �nd permutation �i 2 �(Xi) nA (Xi) such that (�i)
2 = idXi : For each i;

and for each �x�i 2 X6
�i, the Classi�cation of Finite Simple Groups implies that G�x�i 7�! Xi

10Here, and elsewhere, log has always basis 2.
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is either alternating or symmetric. Denote

G0i = fg : gjXi 2 fidXi ; �igg ;
G00i = fg : gjXi = idXig :

Because of the choice of �i; G00i � G0i � G are subgroups of G and [G0i : G
00
i ] � 2:

We show that G0i 7�! X�i is 6-transitive. Indeed, by the hypothesis, G 7�! X�i is 6-
transitive. Take any two tuples �x; �x0 2 (X�i)

6 and any g 2 G such that g � �x = �x0: Because
G�x0 7�! Xi is alternating or symmetric, there is g0 2 G�x0 such that (g0g) jxi 2 fidXi ; �ig :
Then, g0g � �x = �x0 and g0g 2 G0i :
By the Classi�cation of Finite Simple Groups, G0i 7�! X�i is alternating or symmetric.

Lemma 13 shows that G00i 7�! X�i is alternating or symmetric. �

B.2. Finitely many tuple types. Group action G 7�! X has �nitely many tuple types, if
for each k;

���[�x] : �x 2 Xk
	�� <1: In this section, we show that compact group actions have

�nitely many tuple types. The next simple observation is used without mention throughout
the rest of the paper.

Lemma 17. If G 7�! X has �nitely many tuple types, then for each �nite tuple �u � X;

G�u 7�! X has �nitely many tuple types. In particular, for each k,
���[�x; �u] : �x 2 Xk

	�� <1:

Proof. Notice that for each k;
���[�x; �u] ; �x 2 Xk

	�� = ���[�x; �u] ; �x 2 Xk
	�� <1: �

Lemma 18. For any local U and �nite �x� � U with length l; set U is a local set of group
action G�x� 7�! X:

Proof. Take any �x; �x0 2 Uk and assume that [�x; �x�] = [�x0; �x�] : By the de�nition of the relative
type, there is a permutation g such that g � �x� = �x� and g � �x = �x0: If set U is local, then there
is a g0 such that g0 2 G�x� ; g

0 � U = U and g0 � �x = �x0: Thus, U is local under G�x� 7�! X: �

Lemma 19. Suppose U � X is local under group action G 7�! X, and that there are x0 2 U
and x1 =2 U; [x1] \ U 6= ? such that x0^x1 is not analogous to x^x0 for any x; x0 2 U: Then,
for any local V � U; x1;

either jV \ [x0]j � 2 jU \ [x0]j ; or jV \ [x1]j � 2 jU \ [x1]j : (B.1)

Proof. We need to show that either m�
0 � m�

1; or m0 � m1: Recall the argument described
in Section 7.2.2. Consider a graph with nodes V and such that there exists a directed edge
from node x to node x0 if and only if x^x0 s analogous to x0^x1: Let k denote the out-degree
of node x: Because V is 1-local, the out-degree does not depend on the choice of x 2 V \ [x0] :
Similarly, let l denote the in-degree of x 2 V \ [x1] : By the choice of x0 and x1; there is no
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edge that goes out of a node in U \ [x0] into a (possibly, di¤erent) node in U \ [x1] : Thus,
the number of edges that go out of U \ [x0] can be bounded by

jU \ [x0]j k � j(V nU) \ [x1]j l:

Similarly, the number of edges that go into U \ [x1] can be bounded by

jU \ [x1]j l � j(V nU) \ [x0]j k:

The two inequalities put together imply that

k � jV \ [x1]j
jU \ [x0]j

l � j(V nU) \ [x1]j
jU \ [x0]j

j(V nU) \ [x0]j
jU \ [x1]j

k;

which implies that at least one of the inequalities (B.1) holds. �

Lemma 20. Suppose that group action G 7�! X is  -compact group action for some  < 1
2
:

Then, it has �nitely many tuple types.

Proof. Let G 7�! X be a  -compact group action for any  < 1
2
group action. By assump-

tion, any compact group action has �nitely many tuple types of 1-tuples. Suppose that it
has �nitely many k types for some k � 1; but in�nitely many (k + 1)-types. Then, there are
x0; x

� 2 X and �x� 2 Xk�1 such that jf[x; �x�; x�] : x 2 [x0; �x�]gj =1:

Find (k + 1)-local U � �x�; x� and that for each x 2 X; there is x0 2 U \ [x] : Assume that
U is large enough so that for each local U 0; each x =2 U; there is local U 00 � U 0 [ fxg so that
log jU 0j �  +log jU j : Let U0 = U and �nd an increasing sequence of local sets U0 � U1 � :::

and elements x1; x2; ::: 2 [x0; �x�] such that

� jUn+1j � 	 jUnj ;
� Un+1 � Un; xn; and
� for each x 2 Un; xn =2 [x; �x�; x�] :

By Lemma 18, sets Un are local under group action G�x� : By Lemma 19, for each n; either

either
jUn+1 \ [x�; �x�]j
jUn \ [x�; �x�]j

� 2; or jUn+1 \ [x0; �x
�]j

jUn \ [x0; �x�]j
� 2:

Thus, for either x = x� or x = x0;

lim
n!1

1

n
log

jUnj
jU0j

� lim
n!1

1

n
log

jU0 \ [x; �x�]j
jU0j

Yn

m=1

jUm \ [x; �x�]j
jUm�1 \ [x; �x�]j

� log
p
2 >  :

Contradiction. �
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B.3. Transitivity. A set B � X is a block under group action G 7�! X if for each g 2 G,
either g � B = B, or g � B \ B = ?: Group action G 7�! X is block (k-, highly) transitive
(if X is �nite, alternating) with block B � X, if group action G 7�! [B] is (k-, highly)
transitive (alternating).

Lemma 21. Take any group action G 7�! X such that all types of 1-tuples have in�nite
cardinality, j[x]j =1 for each x: For any �nite U and V; there is g 2 G such that g �U \V =
?:

Proof. The proof proceeds by induction on jU j : If jU j = 1; then the claim follows from the
assumption about in�nite cardinality of types of 1-tuples. Suppose that the claim holds for
all �nite V and all U such that jU j � k � 1: Take any U; jU j � k � 1 and u =2 U . By
the repeated application of the inductive claim, we can �nd in�nitely many g1; g2; ::: such
that gn � U \

�
V [

S
m<n gm � U

�
= ?: Suppose that there is u such that gn � u 2 V for

each n: Because V is �nite, there exists v0 such that set N0 = fn : gn � u = v0g has in�nite
cardinality: Because of the assumption of in�nite cardinality of types of 1-tuples, there exists
g 2 G such that g � u =2 V . Because V is �nite and sets gn � U are disjoint, there is n 2 N0
such that ggn � U \ V = ?: This ends the proof of the inductive claim. �

Lemma 22. If G 7�! X is block highly transitive with block B such that jBj < jXj ; then
for each x 2 B; there exists block B0 2 [B] such that Gx 7�! XnB is block highly transitive
with block B0:

Proof. Notice that GB 7�! XnB is block highly transitive with block B0 2 [B] n fBg ; and
[GB : Gx] � jBj : The result follows from Lemma 13. �

Lemma 23. Suppose that G 7�! X is transitive and for each x; there exists �nite Ux � X

such that Gx;Ux 7�! XnUx is transitive. Then, G 7�! X is block 2-transitive.

Proof. For any x, de�ne Bx =
S
fx0 : x0 is x-algebraicg : Because of the transitivity of the

group action Gx;Ux 7�! XnUx, it must be that Bx � Ux; and Bx is �nite. Because GBx �
Gx � Gx;Ux ; and UxnBx is �nite, it must be that GBx 7�! XnBx is transitive.
For any x; x0; x00X; [x00;x] =

S
x012[x0;x]

[x00;x01]. Then, for each x
0 2 Bx; each x00 2 Bx00 ; x

00

is x-algebraic; and x00 2 Bx: This implies that Bx = Bx0 for each x0 2 Bx: Because for any
g 2 G; g � Bx = Bg�x, it must be that B is a block. Because GB 7�! XnB is transitive, it
must be that G 7�! X is block 2-transitive with block B: �

Lemma 24. Suppose that the group action G 7�! X is transitive and it has �nitely many
tuple types. Fix x and tuple �x and for each �x0 such that [x; �x] is in�nite and for each g 2 G;
(g � [x; �x]) n [x; �x] is �nite. Then, Xn [x; �x] is �nite.
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Proof. For any two sets A;B; recall that A4B = (AnB)[ (BnA) s the symmetric di¤erence
between A and B: The symmetric di¤erence is symmetric (A4 B = B 4 A), and for any
triple of sets, (A4B)4 (A4 C) = B 4 C:

For each �x0 2 [�x] ; de�ne S (�x0) = g � [x; �x] for some g such that g � �x = �x0 (of course, the
de�nition does not depend on the choice of g). Suppose that S (�x) is in�nite, and for each
�x0 2 [�x] ; the set S (�x0) nS (�x) is �nite. Suppose that XnS (�x) is in�nite.
By de�nition, S (�x) = [x; �x] is in�nite. Because of the �nitely many tuple types, there

exists a �nite set X0 (�x) � XnS (�x) such that G�x � X0 (�x) = X0 (�x) and that for each
x0 2 Xn (S (�x) [X0 (�x)) ; the relative type [x0; �x] is in�nite.
Because of the �nitely many tuple types, there exists N < 1 such that for all �x0 2 [�x] ;

the cardinality of set

W (�x; �x0) = (S (�x)4 S (�x0)) n (X0 (�x) [X0 (�x
0))

is bounded by N: Let N be the smallest constant with such a property.
We show that N > 0: Indeed, it is enough to show that there exists �x0 such that

S (�x0) n (S (�x) [X0 (�x)) is not empty. But this follows from transitivity of G 7�! X:

Find �x0 so that jW (�x; �x0)j = N: By Lemma 21, there exists g 2 G�x such that

g � ((S (�x)4 S (�x0) [X0 (�x
0)) nX0 (�x))

\ (S (�x)4 S (�x0) [X0 (�x
0)) = ?:

Let �x00 = g � �x0: Then,

W (�x0; �x00) = (S (�x0)4 S (�x00)) n (X0 (�x
0) [X0 (�x

00))

= (S (�x)4 S (�x00) [ S (�x)4 S (�x0)) n (X0 (�x
0) [X0 (�x

00))

= ((S (�x)4 S (�x00)) n (X0 (�x
0) [X0 (�x

00)))

[ ((S (�x)4 S (�x0)) n (X0 (�x
0) [X0 (�x

00))) :

The two sets in the union above are disjoint. Moreover, because S (�x)4 S (�x00) is disjoint
from X0 (�x

0) nX0 (�x) ; it must be that

((S (�x)4 S (�x00)) n (X0 (�x
0) [X0 (�x

00))) � ((S (�x)4 S (�x00)) n (X0 (�x) [X0 (�x
00))) = W (�x; �x00)

and, because S (�x)4 S (�x0) is disjoint from X0 (�x
00) nX0 (�x) ; it must be that

(S (�x)4 S (�x0)) n (X0 (�x
0) [X0 (�x

00)) � (S (�x)4 S (�x0)) n (X0 (�x
0) [X0 (�x)) = W (�x; �x0) :

Thus, jW (�x0; �x0)j � jW (�x; �x0)j + jW (�x; �x00)j = 2N; which yields a contradiction with the
choice of constant N: �
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B.4. Splitting. This section establishes a useful technical property of group actions with
�nitely many tuple types. Let G 7�! X be a group action with �nitely many types. Suppose
that the type [x] is in�nite, j[x]j =1: The type [x] can be split, if there is z 2 [x] such that
sets [z;x] and [x] n [z;x] have in�nite cardinality. The type [x] can be robustly split, if for
each tuple �u � X and x0 2 [x] such that j[x0; �u]j =1; the relative type [x0; �u] can be split.
A splitting sequence of elements of type [x] is a sequence s0; t0; s1; :::;2 [x] such that for

all m, if �sm = (s0; t0; :::; sm; tm) ; then for all m; k � 0 (a) sm+k+1; tm+k+1 2 [sm+1; �sm] and
(b) for any t such that tm^t 2 [sm^sm+1; �sm�1] ; t =2 [sm+1; �sm].

Lemma 25. Suppose that the group action G 7�! X is transitive. If it cannot be split, then,
G 7�! X is block 2-transitive.

Proof. It follows from Lemma 23. �

Lemma 26. Suppose that the group action G 7�! X has �nitely many tuple types. If the
type [x] can be split, then there exist s0; t0; s 2 X such that j[s; s0; t0]j =1 and for any t so
that t0^t is analogous to s0^s; t =2 [s; s0; t0] :

Proof. If the group action G 7�! X can be split, then there exists z 2 [x] such that sets
[z;x] and [x] n [z;x] have in�nite cardinality. By Lemma 24, it must be that there exists a
permutation g such that [z;x] ng � [z;x] is in�nite. Take s0 = x and t0 = g �x: Because of the
�nitely many tuple types, there exists s 2 [z;x] ng � [z;x] such that the relative type [s; s0; t0]
is in�nite. The Lemma follows. �

Lemma 27. Suppose that the group action G 7�! X has �nitely many tuple types. Let
x; u 2 X be such that j[x;u]j = 1: Suppose that the type [x] can be robustly split. Then, there
exist a splitting sequence of type [u].

Proof. We construct a splitting sequence s0; t0; s1; ::: of elements of type [u] and a sequence
x0; x1; x2; ::: 2 [x] such that for eachm; the relative type [xm; �sm�1] is in�nite, and xsm; xtm; xm+1 2
[xm; �sm�1] ; where xs and xt are the unique elements such that xsm^sm and x

t
m^tm is analogous

to x^u: The construction follows from a repeated application of Lemma 26. �

Lemma 28. Suppose that the group action G 7�! X is  -compact for some  < 1
2
: Then,

there is no splitting sequence.

Proof. Find U0 from the de�nition of  -compactness. Find a splitting sequence s0; t0; s1; ::::
Find a collection of local sets Un � U0; sn; tn: Because of  -compactness, we can ensure that
jUnj � 2 (jU0j+2n):
On the other hand, for each 0 < m � n; �nd gm;n 2 GUn such that gm;n � �sm�1 = �sm�1 and

gm;n � sm = tm: Such bijections exist because Un is local. Let An;n = fsn; tng ; and for each
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m < n;

Am;n = Am+1;n [ gm;n � Am+1;n:

Then, by induction and the choice of the sequence, Am+1;n � [sm+1; �sm]. Moreover, for each
t 2 gm;n �Am+1;n, tm^t 2 [sm^sm+1; �sm�1], and t =2 Am;n: Thus, sets Am;n and gm;n �Am+1;n are
disjoint. Because they have equal cardinality, jAm;nj = 2 jAm+1;nj, and A0;n = 2n: Because
A0;n � Un; it must be that jUnj � 2n: Contradiction. �

B.5. Generation and small orbits. Group action G 7�! X has uniformly bounded 1-
types, if there exists a constant m <1 such that j[x]j � m for each x 2 X: The next Lemma
shows that, for group actions with uniformly bounded 1-types, any �nite set of permutations
extends to a �nite subgroup of permutations.

Lemma 29. Suppose that G 7�! X is a group action with uniformly bounded 1-types. For
any �nite set G0 � G; there exists a �nite subgroup G0 � G so that G0 � G0:

Proof. Let m = supx2X j[x]j : For each x 2 X; choose a bijection i[x] : [x]! f1; :::; j[x]jg : For
each g 2 G; de�ne permutation bijection g[x] = i[x] � g � i�1[x] of set f1; :::; kxg :
For each [x] ; let U [x] =

�
[x0] : g[x0] = g[x] for each g 2 G0

	
: Then, fU [x]g[x]�X is a �nite

partition of the in�nite set f[x] : x 2 Xg of all 1-types, and
���fU [x]g[x]�X��� � (m!)jG0jm <1:

For each [x] ; let G[x] �
�
g[x] : g 2 G

	
be the smallest group generated by permutations�

g[x] : g 2 G0
	
: Because G[x] is a subset of symmetric group G[x] � � f1; :::; j[x]jg ;

��G[x]�� �
m!:

Without loss of generality, assume that idX 2 G0 and that g�1 2 G0 for each g 2 G0: Let
G0 = fg1:::gn : gi 2 G; n <1g be the set of all �nite products of permutations in G0: Clearly,
G0 is a group. Moreover, for each g 2 G0; g[x] 2 G[x]: Hence, jG0j �

�
supx

��G[x]���jfU [x]g[x]�Xj <
1: �

B.6. Countable extensions. The last result establishes a simple extension property of
permutations on a countable set.

Lemma 30. Suppose that X is countable. Suppose that g0; g1; ::: 2 G is a sequence of
permutations such that there exists a partition of set X into �nite sets P = fV � Xg such
that for each V 2 P ; gn � V 2 V for each n; and there exists nV so that for each m > nV ;

gm � V = V and gm � (gnV ::::g1 � V ) = gnx ::::g1 � V:

Then, there exists g that preserves analogies and such that g � V = gnx ::::g1 � V for each
V 2 P :
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Proof. For each V 2 P, de�ne g � V = gnV ::::g1 � V: Similarly, for each V 2 P, de�ne
g�1 � V = (gnV ::::g1)

�1 � V: Then, g is a bijection on P ; and g�1 is its inverse.
Let V0; V1; ::: be an enumeration of partition P : By taking subsequences, we can �nd a

sequence of permutations g0; g1; ::: such that gi �V = g �V for each V 2 P ; and gi+1jV0[:::[Vi =
gijV0[:::[Vi : Then, the pointwise limit g = limi!1 g

i is a well -de�ned bijection. Moreover,
for each �nite �x; there is i such that gi � �x = g � �x, and �x and g � �x are analogous. �

Appendix C. Concepts

This section deals with concepts and their properties. Throughout the section, we assume
that G 7�! X is a group action, and we list additional properties only when they are needed
for extra results.
We list all de�nitions used in this appendix. A concept is a subset S � X such that

iS := supx2S j[S;x]j <1: For each concept S; let i (S) = supx2S j[S;x]j <1:

Concept S is a block, if for each g 2 G; either g � S = S; or g � S \ S = ?: In other words,
S is a block if i (S) = 1:
A tuple of variables �x is a code of concept S, if [S; �x] = fSg : For example, if S is a block,

then any x 2 S is a code of S.
Concept S � X is coin�nite, if for each concept S 0 2 [S] either S 0 = S or j[S 0;S]j = 1:

Let S be the set of all coin�nite concepts.
It is useful to study the action G 7�! X [ S of group G on the elements of space X and

coin�nite concepts in S: In order to distinguish concepts under the group actions G 7�! X

and G 7�! X[S; we reserve letters S; S 0; S 00; s � X for the former, and C;C 0; C 00; c � X[S.
Of course, any concept under the former group action is also a concept under the latter. For
each C � X [ S, de�ne the union of elements of C as

pC =
[
C � X:

Here, we abuse slightly the notation, and we treat elements of C as subsets of X; this is
immediate when x 2 C \ S; and if x 2 C \X; then we interpret x as one-element set fxg.
Say that subset (not necessarily a concept) C � X [ S is robustly block exchangeable, if

C is in�nite, CC ! C is transitive, block highly transitive with �nite block B � C; and for
each tuple �x; there exists x0 2 C such that jCn [x0;C; �x]j < 1 and GC ; �x 7�! [x0;C; �x] is
block highly transitive with block B0 2 [B]. If jBj = 1; we drop the word "block."
Two robustly exchangeable concepts C1 and C2 are �x-independent for some tuple �x �

X [ S, if for each i; there are xi0 2 Ci such that jCin [xi0;C1; C2; �x]j <1 and, for any �nite
tuple of concepts �x�i � C�i; [xi0;C

1; C2; �x] = [xi0;C
1; C2; �x; �x�i]. Together with robust ex-

changeability, the latter implies that the group actions GC1;C2;�x\Gx�i 7�! [xi0;C
1; C2; �x; �x�i]
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are highly transitive. If C1 and C2 are �x-independent for each tuple �x, then we say that they
are independent :
Two robustly exchangeable concepts C1; C2 are �x-correlated, if for each i; there are xi0 2

[Ci] such that jCin [xi0;C1; C2; �x]j < 1 and a bijection j : [x10;C
1; C2; �x] ! [x20;C

1; C2; �x]

such that (g � j) (x0) = (j � g) (x0) for each g 2 GC1;C2;�x and each x0 2 [x10;C
1; C2] : We

refer to j as the correlating function. Robust exchangeability implies that the group actions
GC1;C2;�x 7�! [xi0;C

1; C2; H] are highly transitive. It is easy to check that if two robustly
exchangeable concepts of concepts are �x-correlated, then they are �x0-correlated for each
�x0 � �x:

C.1. Basic properties.

Lemma 31. If S is a concept, S 0 � S; and S 0 6= S; then S 0 =2 [S].

Proof. On the contrary, suppose that S 0 � S; S 0 6= S; and S 0 � S: Find g 2 G such that
g �S 0 = S: Consider a decreasing sequence of sets S0 = S 0; Sn = g �Sn�1: Then, Sn�1 � Sn and
Sn�1 6= Sn: Find n > i (S) and x 2 Sn: Then, i (S) � jfS 00 2 [S] : x 2 Sgj � jfS0; :::; Sngj �
n+ 1 > i (S) : Contradiction. �

Lemma 32. Suppose that there exists a �nite collection of concepts S such that X =
[

S2S
S:

Then, there exists S 2 S such that [S] <1.

Proof. On the contrary, suppose that j[S]j = 1 for each S 2 S: By Lemma 21, there
exists a sequence of permutations g1; g2; ::: such that gn � S 6= gm � S for m 6= n: Because
X =

[
S2S

S =
[

S2gn�S
S for each n; and S is �nite, it means that for each x 2 X; there

exists S 2 S; such that x belongs to gn � S for in�nitely many n: This yields a contradiction
with the fact that S is a concept. �

Lemma 33. If C is a concept under the group action G 7�! X [ S; then pC is a concept
under the group action G 7�! X and C is pC-algebraic:

Proof. For each x 2 X;

jfP : x 2 P; P 2 [pC]gj = jfpC 0 : x 2 pC 0; C 0 2 [C]gj
� jfs : x 2 s; s 2 Sgj sup

s2S
jfC 0 : s 2 C 0; C 0 2 [C]gj

� i (S) i (C) <1:

This shows the �rst part of the claim. For the second, notice that for each x 2 X;

fC 0 2 [C] : x 2 pC 0g =
[

S02[S]:x02S0
fC 0 2 [C] : S 0 2 C 0g :
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Hence, for each x 2 pC;

fC 0 2 [C] : pC 0 = pCg � jfC 0 2 [C] : x 2 pC 0gj <1:

�

C.2. Coin�nite concepts.

Lemma 34. Suppose that G 7�! X has �nitely many tuple types. Any concept has a code.
Any coin�nite concept has a two-element code.

Proof. Suppose that S is a concept. If S is �nite, then any enumeration �x of S is a code of S.
Suppose that S is in�nite. By Lemma 31, for each S 0 2 [S] n fSg ; there is always x0 2 SnS 0:
Thus, we can �nd a set V � S; jV j � i (S) such that if S 0 2 S and S 0 � V; then S 0 = S:

Then, any enumeration �x of set V is a code of S:
Suppose that S is a coin�nite concept. Consider two cases. Suppose that for each x 2 S;

there exists x0 2 S so that fS 0 2 [S] : x 2 Sg \ fS 0 2 [S] : x0 2 Sg = fSg : Then, [S;x; x0] =
fSg :
Alternatively, suppose that there exists x 2 S; such that for each x0 2 S; there exists S 0 2

[S] n fSg such that x; x0 2 S 0: In other words, S =
[

S02S
S 0; where S = fS 0 2 [S] n fSg : x 2 S 0g :

By Lemma 32, there exists S0 2 S such that S0 \ S is S-algebraic. Because S0 is a concept,
it must be that S0 is S-algebraic: That contradicts the fact that S is coin�nite. �

Lemma 35. Suppose that G 7�! X has �nitely many tuple types. If S is a concept, then
G 7�! X [ [S] has �nitely many tuple types. Moreover, G 7�! X [S has �nitely many tuple
types.

Proof. Suppose that S is a concept. By the �rst part of Lemma 34, concept S has a code
�x: Let M be the length of tuple �x: Then, the number of n-tuples of the group action G 7�!
X [ [S] is not higher then the number of Mn-tuples of the group action G 7�! X.
Suppose that S is a coin�nite concept. First, we show that there are �nitely many concepts

S such that pair of elements �x� 2 X2 is a code of concept S: Notice that �x� partitions the
space X into relative types � = f[x; �x�] : x 2 Xg : Let M = j�j be the size of the partition.
Then, M is not higher than the number of types of 3-tuples. Because G 7�! X has �nitely
many tuple types, M <1:

One easily checks that if concept S is coded by �x�; then S must be measurable with respect
to partition �: In particular, there are at most 2M concepts encoded by tuple �x�:
Take any n: The number of types of n-tuples �s 2 (X [ S)n of the group action G 7�! X[S

is bounded by
�
2M
�n
times the number of types of 2n-tuples of the group actionG 7�! X: �
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Lemma 36. Suppose that G 7�! X has �nitely many tuple types. For each concept S0; there
exists the largest coin�nite concept T0 � S0 such that S0 is T0-algebraic. If C0 � X [ S is a
concept under the group action G 7�! X [ S; then there exists the largest coin�nite concept
T0 � pC0 such that C0 is T0-algebraic.

Proof. By Lemma 35, the group action G 7�! [S0] has �nitely many tuple types.
We show that for each concept S 2 [S0] ; there exists a coin�nite concept T such that

S � T and S is T -algebraic: For each S 2 [S0] ; de�ne B (S) = fS 0 2 [S] : S 0 is S algebraicg :
We show that B (S) is a �nite block. The claim follows from the following observations.
First, because of �nitely many types of 2-tuples, B (S) is a union of �nitely many �nite sets
[S 0;S] ; hence B (S) is �nite. Second, for each permutation g; g � B (S) = B (g � S) : Third,
B (S) = B (S 0) for each S 0 2 B (S) : Indeed, because S and S 0 have the same type, it must
be that jB (S 0)j = B (S) : Moreover, if S 00 2 B (S 0) ; then S 00 is S 0-algebraic, and hence, also
S-algebraic. Thus, B (S 0) � B (S) :

De�ne T =
[
B (S) : Then,

j[S;T ]j � j[S;B (S)]j j[B (S) ;T ]j � jB (S)j i (S) <1:

Next, we show that T is coin�nite. Suppose not. Then, there exists T 0 such that T 0 6= T

and T 0 is T -algebraic: Suppose that T 0 = B (S 0) : Then, S 0 =2 B (S) : On the other hand,

j[S 0;S]j � j[S 0;B (S 0)]j j[B (S 0) ;T 0]j j[T 0;T ]j j[T 0;S]j :

Because each of the terms on the right-hand side is �nite (j[S 0;B (S 0)]j � jB (S)j, j[B (S 0) ;T 0]j �
i (S) ; j[T 0;T ]j <1; and j[T ;S]j = 1) the left-hand side is �nite as well. This contradicts the
fact that S 0 =2 B (S) :
Finally, we show that, for each coin�nite concept S; there exists the largest coin�nite con-

cept T such that S � T and S is T -algebraic. Let S = fT : T � X is a coin�nite conceptg :
For each S; de�ne B (S) = fT 2 S : S � T and S is T -algebraicg : Then, because of the
�nitely many tuple types, one shows that T =

[
B (S) 2 B (S) : Such T is the largest

coin�nite concept that contains S:
The Lemma follows from the above observations and Lemma 33. �

C.3. Compactness properties of G 7�! X [ S.

Lemma 37. Suppose that the group action G 7�! X has �nitely many tuple types and it is
 -compact for some  <1. Consider the group action G 7�! X [ S. Then, for each k;

(1) there exists a constant ck such that for each �nite V; there exists k-local U � V such
that log jU j �  log jV j+ ck; and
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(2) for each " > 0; x 2 X [ S, and �nite set V � [x] ; there exists k-local U � [x]

such that V � U and for each x0 2 [x] ; there exists a k-local U 0 � U; x0 so that
log jU 0j �  + "+ log jU j :

Proof. By de�nition, the group action G 7�! X has �nitely many tuple types. By Lemma
35, the group action G 7�! S has �nitely many 1-tuples. Fix a �nite set T � S such that
T contains exactly one representative for each type of concepts [S] � S: For each S 2 T ;
�nd a two-element code �xS 2 X2: Also, �x a �nite set set X0 � X that contains exactly one
representative for each type of elements of X: Let �X0 be a �nite set of 2-tuples that contains
a two element code �x for each concept s 2 S such that s \ X0 6= ? and such that �x^s is
analogous to �xS^S if s 2 [S] :
Fix k � 2: Because G 7�! X is  -compact, there exists a 2k-local U0 such that for each

2k-local U � U0, each x 2 X; there exists local set U 0 � U; x such that

log jU 0j �  + log jU j : (C.1)

Assume that U0 � X0; �X0; and that, additionally, U0 is large enough so that each type of
4k-tuples is represented in U : for each tuple �x 2 X4k; there exists �x0 � U0 that is analogous
to �x.
For each U � X such that U � U0 and U is 2k�local under the group action G 7�! X;

de�ne

US = U [
[

S2T

�
s 2 [S] : s^�x 2 S^�xS for some �x � U

	
= U [ fs 2 S : s \ U 6= ?g

The second equality follows from the fact that U is 1-local, and that U � U0 � X0; �X0:

Notice that there exists a constant M = supx2X jfs 2 S : x 2 sgj such that��US�� �M jU j : (C.2)

For each x 2 US ; de�ne cU (x) = x if x 2 X and cU (x) = �x � U if x^�x is analogous to
S^�xS for some S 2 T . The choice of the mapping cU is not unique.
We show that US � X [ S is k-local under the group action G 7�! X [ S: Indeed, take

any two k-tuples �x; �x0 � US such that �x and �x0 are analogous. Let �c = cU (x1) ^:::^c
U (xk)

and similarly de�ne �c0: Because tuples �x and �x0 are analogous, there exists a tuple �d such
that �x^ �d and �x0^�c0 are analogous. Because U contains the representatives of all types of
4k-tuples, there exists a tuple �z^ �w � U such that �c^ �d 2 [�z^ �w;U ] : Find g 2 GU such that
g ��c^ �d = �z^ �w and notice that g 2 GUS (this follows from the fact that a code uniquely de�nes
the associated concept, and because of the construction of set US :): Let �x00 = g � �x: Then,
�x^�c 2

�
�x00^�z;US

�
: Using a similar argument, we can show that �x0^�c0 2

�
�x00^ �w;US

�
: Thus,

�x; �x0 2
�
�x00;US

�
.
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The rest of the proof is concluded in two steps.

(1) For each set V � X [ S; �nd set V X such that V �
�
V X
�S
: We can choose V X so

that
��V X

�� � jV j : Because of (C.1) and (C.2), we can �nd 2k-local U � V X [ U0,
U � X such that

log
��US�� � log jU j+ logM �  log jV j+  log jU0j+ logM:

(2) Take any x 2 X [S and �nite set V � X [S. Suppose that there is " > 0 such that
for each k-local U � [x] such that V � U; there is xU 2 [x] so that for each k-local
U 0 � U; x; jU 0j > 2 +" jU j : Let zU 2 xU \X (if xU 2 X; let zU = xU).
Construct a sequence W0 � W1 � ::: � X of k-local sets under the group action
G 7�! X: Let W0 � U0 be a k-local set that is large enough so that W S � V .
For each k; �nd local Wk � Wk+1; z

WS
k�1\[x]: Because of  -compactness, we can �nd

the sequence so that jWkj � 2 jWk�1j for each k: On the other hand, for each k;
W S
k \ [x] � V; xW

S
x \[x] and��W S

k \ [x]
�� � 2 +" ��W S

k�1 \ [x]
�� :

Thus,

lim
k!1

��W S
k

��
jWkj

� lim
k!1

2( +")k
��W S

0 \ [x]
��

2 k jW0j
=1;

which contradicts (C.2).

�

C.4. Robust exchangeability.

Lemma 38. If C is robustly exchangeable concept, and C 0 is a concept, then either C � C 0;

jC 0 \ Cj = 1; or C and C 0 are disjoint.

Proof. It is easy to see that C \ C 0 is a concept. Thus, it is enough to show that for any
robustly exchangeable concept C; any concept C 0 � C; C 0 6= C; it must be that jC 0j = 1:

Suppose not. Because C 0 is a concept, then i (C 0) < 1. Find a subset A � C such that
i (C 0) + 2 � jAj <1, jA \ C 0j � 2; and jAnC 0j � 1: Fix x0 2 A \ C 0: Then,

i (C 0) � jfg � C 0 : x0 2 g � C 0gj � jfg � (A \ C 0) : g 2 Gx0gj � i (C 0) + 1;

which yields a contradiction with the fact that S 0 is a concept. �
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C.5. Independence and correlation.

Lemma 39. For any tuple �x; any two robustly exchangeable concepts C1 and C2 are either
�x-correlated or �x-independent.

Proof. Suppose that C1 and C2 are robustly exchangeable. For each i; �nd xi0 2 [Ci] such
that jCin [xi0;C1; C2; �x]j < 1: By robust exchangeability, the group actions GC1;C2;�x 7�!
[xi0;C

1; C2; �x] are highly transitive for each i = 1; 2.
Find an in�nite sequence of distinct elements xi1; x

i
2; ::: 2 Ci and let E1n = fx11; :::; x1ng :

Let Gn = GC1;C2;�x \
T
x2E1n Gx: Because of robust exchangeability, for each n; there is �nite

E2n � [x20;C1; C2; �x] so that Gn 7�! [x20;C
1; C2; �x] nE2n is highly transitive and Gn �E2n = E2n.

Of course, the sequence of �nite sets E2n is (weakly) increasing in the set order, E
2
n � E2n+1

for each n. To shorten the subsequent notation, take E10 = E20 = ? and de�ne Ci
n =

[xi0;C
1; C2; �x] nEi

n:

If jE21 j = 1; then let j (x11) = x21: Because of the high transitivity of G1 7�! C2nE21 ; j can be
extended to a bijection j : C1 ! C2 such that (g � j) (x0) = (j � g) (x0) for each g 2 GC1;C2;�x

and each x0 2 [x10;C1; C2] :for any g0 2 GC1;C2 : Hence, C1 and C2 are �x-correlated.
If E2n = ? for each n; then, C1 and C2 are �x-independent.
We show that there is no other possibility.
On the contrary, suppose that E2n = ? and

��E2n+1�� � 2 for some n � 0: Then, group

action Gn 7�! Ci
n is highly transitive. Because

�
Gn \Gx1n+1

�
� E2n+1 = E2n+1; this implies

that Gn 7�!
�
E2n+1;C

1; C2
�
is highly transitive and E2n+1 is a �nite and non-trivial block of

group action Gn 7�! C2n: Because highly transitive group action does not have non-trivial
blocks, we get a contradiction.
Alternatively, suppose that jE2nj = 0 and

��E2n+1�� = 1 for some n � 1: Let E2n+1 = �x2n+1	 :
For any g; g0 2 Gn�1 such that g �x1n = g0 �x1n and g �x1n+1 = g0 �x1n+1, we have g �x2n+1 = g0 �x2n+1:
Indeed, if not, then g�1g0 2 Gn+1; but g�1g0 =2 Gx2n+1

; which contradicts the choice of x2n+1:
For each xa; xb 2 C1n�1; de�ne jxa (xb) = g � x2n+1 for some g so that g � x1n = xa and
g � x1n+1 = xb: The de�nition does not depend on the choice of g and for any g 2 Gn�1;

g � jxa (xb) = jg�xa (g � xb) :
Because Gn 7�! C2n is highly transitive, it must be that jxa

�
C1n�1n fxag

�
= C2n (oth-

erwise jx1n
�
C1n�1n fx1ng

�
6= C2n; and there is g 2 Gn�1 such that g � jx1n

�
C1n�1n fx1ng

�
6=

jx1n
�
C1n�1n fx1ng

�
; which implies that g � C1n�1n fx1ng 6= C1n�1n fx1ng and g =2 Gn): Simi-

larly, one shows that jC1n�1nfxbg (xb) = C2n: Because Gn 7�! C2n is highly transitive, we
have jxa (xb) 6= jxa (x

0
b) for xb 6= x0b (otherwise j

�1
x1n
(x0) would be a block of group action

Gn 7�! C2n�1:)

We show that for each xa; x0a; xb 2 C1n�1; if xb 6= xa; x
0
a; then jxa (xb) = jx0a (xb) : Suppose

not and �nd x0b = j�1xa
�
jx0a (xb)

�
6= xb:
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� If x0b 6= xa; x
0
a; then there isg 2 Gxa;x0a;xb such that g � x0b 6= x0b: But then, g �

j�1xa
�
jx0a (xb)

�
= j�1g�xa

�
jg�x0a (g � xb)

�
= j�1xa

�
jx0a (xb)

�
= x0b:

� If x0b = xa; x
0
a; then there is g 2 Gxa;x0a such that g � xb 6= xb: But then, g � xb =

g � j�1xa
�
jx0a (x

0
b)
�
= j�1xa

�
jx0a (x

0
b)
�
= xb:

De�ne j� : C1n�1 ! C2n�1 by j
� (xb) = jxa (xb) for some xa 6= xb: Then, for any g 2

Gn�1; g � j�jC1n�1 = j� � gjC1n�1, which shows that Gn �
�
E2n�1 [ j� (x1n)

�
=
�
Gn�1 \Gx1n

�
��

E2n�1 [ j� (x1n)
�
= E2n�1 [ j� (x1n) ; which contradicts the initial claim that Gn 7�! C2nE2n�1

is highly transitive.
This ends the proof of the Lemma. �

Lemma 40. Suppose that the group action G 7�! X has �nitely many tuple types and it
is  -compact for some  < 1. Consider the group action G 7! X [ S: Any two robustly
exchangeable concepts C1 and C2 are either independent or correlated.

Proof. We assume that the thesis of Lemma 37 holds. We show that, if two robustly ex-
changeable concepts C1 and C2 are �v-independent for some tuple �v, then they are �v^x-
independent for any x 2 X.
Take any tuple �v and element x 2 X: Let k0 be the length of tuple �v: Let k = k0 + 13:

Suppose that C1 and C2 are robustly exchangeable and G�v-independent but G�v^x-correlated.
There are xi0 2 Ci such that if Ci

0 = [x
i
0; �v^x;C

1; C2] ; then jCinCi
0j <1 and the group action

G�v^x;C1;C2 7�! Ci
0 is highly transitive. Let j : C

1
0 ! C20 be the correlating function of G�v^x-

correlation. Take any �nite set V0 � �v; x; x10; x
2
0: Let V

i
m � [xi0; �v; C

1; C2] be �nite subsets
such that jV i

mj = m and V 2
m = j (V 1

m) :

Suppose that m � 8: Take any k-local set U � V0; V
1
m; V

2
m: Because of G�v-independence,

and by Lemma 16 ��� �V 2
m;
�V 1
m; �v; U

��� � (m� 2)!
Because of G�v^x-correlation, any enumeration �V 2

m is
�
�v^x^ �V 1

m

�
-de�nable, where, for each i;

�V i
m are enumerations of set V

i
m: By a version of the counting argument from Section (7.2.6),

jU j �
���x; �V 1

m;
�V 2
m; �v; U

��� � ��� �V 2
m;
�V 1
m; �v; U

��� � (m� 2)!
Thus, by Stirling�s approximation,

lim inf
m!1

inf
U�V0;V 1m;V 2m

log jU j
jV0j+ 2m

� lim
m!1

(m� 2) log (m� 2)
jV0j+ 2m

=1;

which contradicts  -compactness. �



60 MARCIN P ¾ESKI

Appendix D. Robust exchangeability under compact group actions

The goal of this part of the appendix is to prove Lemma 3. Assume that G 7�! X is
1
20
-compact. Then, by Lemmas 35 and 37, the group action G 7�! X [ S has �nitely many

tuple types, and it satis�es two quasi-compact properties: for each k; there exists a constant
ck such that for each �nite V; there exists k-local U � V such that

log jU j � 1

10
log jV j+ ck; and (D.1)

for each x 2 X [ S, each �nite set V � [x] ; there exists k-local U � [x] such that V � U

and for each x0 2 [x] ; there exists a k-local U 0 � U; x0 so that

jU 0j < 3

2
jU j : (D.2)

Additionally, the results about splitting from Appendix B.4 apply.

D.1. Proof of Lemma 3. Set C � X is complete, if jCj =1; and there exists a constant
M <1 such that for each C 0 2 [C], if C 0 6= C; then jC 0 \ Cj � M . We show the following
partial results.

Lemma 41. For each tuple �x � X [ S and each x 2 S such that the relative type [x; �x] is
in�nite, there exists a tuple �w � �x and w 2 [x; �x] such that the relative type [w; �w] is robustly
block exchangeable.

Lemma 42. For each tuple �x � X [ S and each x 2 S such that the relative type [x; �x]
is robustly block exchangeable, there exists a complete and robustly block exchangeable set
C � [x] such that Cn [x; �x] is �nite.

Lemma 43. If C is complete and robustly block exchangeable, then C is a concept.

Suppose that B is a block of a robustly block exchangeable concept C � S. Then, B is a
concept. Because each element of C is coin�nite, it must be that jBj = 1; and C is robustly
exchangeable. Lemma 3 follows from the above results.

D.2. Proof of Lemma 41. Take any tuple �x and element x such that the relative type
[x; �x] is in�nite.

(1) There exists a tuple �z � �x and z 2 [x; �x] such that the relative type [z; �z] is in�nite
and the group action G�z 7�! [z; �z] is block 2-transitive. It is helpful to replace tuple
�x � X [ S by a tuple �x� � X so that each coin�nite concept is replaced by its two-
element code (which existence comes from Lemma 34). So, the length of tuple �x� is
at most twice the length of tuple �x: Because the relative type [x; �x] is in�nite, because
of the �nitely many tuple types, there exists x� 2 [x; �x�] such that the relative type
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[x�; �x�] is in�nite.
Let �c be a two-element code of x (if x 2 X; then take �c = x^x:). Because G 7�! X

is  -compact, the induced group action G 7�! X [ [�x] is 2 -compact. By Lemma
28, the latter group action does not have a splitting sequence. By Lemma 27, the
relative type [x�; �x�] cannot be robustly split. Thus, there exists a tuple �z � X [ [S] ;
�z � �x�^�x; and concept z 2 [x�; �x�] so that the relative type [z; �z] is in�nite and it
cannot be split. By Lemma 25, the group action G�z 7�! [z; �z] is block 2-transitive
with a �nite block B � [z; �z] :

(2) We show that the group action G�z 7�! [z; �z] is block highly transitive. Let k0 be the
length of tuple �z: Let k = j2j jBj + k0: Find a sequence x1 2 B1; x2 2 B2; ::: such
that Bi 2 [B; �z] are disjoint blocks of the block 2-transitive group action. Find a
collection of k-local sets such that Un � �z; x1; :::; xn: Let Bn = fB0 2 [B; �z] ;B0 � Ug :
By compactness, we can choose sets Un so that

lim
n!1

1

n
log jBnj � lim

n!1

1

n
log jUnj �

1

10
:

Because the sets Un are k-local, it must be that the group action G�z;Un ! Bn

is 2-transitive. By Lemma 15, G�z;Un ! Bn is alternating or symmetric. Thus,
G�z ! [B; �z] is highly transitive.

(3) For each tuple �u � �z; there exists B�u 2 [B; �z] such that set [B; �z] n [B�u; �u] is �nite.
Notice that because set B is �nite, the group action G 7�! X [ [B] has �nitely many
tuple types. Then, for each tuple �u � �z; there are �nitely many relative types [B0; �z]

for B0 2 [B; �z] :
If the claim does not hold, there exists �v � �z and B1; B2 2 [B; �z^�v] such that the
relative types C1 = [B1; �z^�v] and C2 = [B2; �z^�v] are in�nite and disjoint. However,
that will contradict compactness by the counting argument described in Section 7.2.6.

(4) For each tuple �u � �z; the group action G�u 7�! [B�u; �u] is highly transitive. We can
apply the previous point to tuples �u and �u^u for each u 2 [B�u; �u] to show that the
relative type [B�u; �u] cannot be split. By Lemma 25, the group action G�u 7�! [B�u; �u]

is block 2-transitive with some �nite block C � [B�u; �u] : We can use a version of the
counting argument to show that it must be that jCj = 1. Hence, the group action
G�u 7�! [B�u; �u] is block 2-transitive. Because any �u could have been chosen, it must
be that G�u 7�! [B�u; �u] is block highly transitive.

(5) There exists tuple �w � �z and w 2 [z; �z] such that the set [z; �z] n [w; �w] is �nite and the
relative type [w; �w] is robustly exchangeable. For each tuple �v � �z; pick x�v 2 B�v: If the
set [x; �x] n [x�v; �v] is �nite for all �v, then the relative type [z; �z] is robustly exchangeable.
Otherwise, there exists �v and x1; x2 2 [z; �z] such that the relative types of x1 and
x2 given �v are in�nite and disjoint. In particular, the group action G�v 7�! [x1; �v] is
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block highly transitive with block B0
�v = B�v \ [x1; �v] : Notice that jB0

�vj < jB�xj :We can
repeat the argument for the group action G�v 7�! [x1; �v] : Because the initial block B
is �nite, the argument will stop at a certain moment, and we �nd a tuple �w � �z and
w 2 [z; �w] such that the claim holds.

D.3. Proof of Lemma 42. Take any tuple �x and element x such that the relative type
[x; �x] is robustly block exchangeable. For each tuple �x0 2 [�x0] ; let S (�x0) = g � [x; �x] for some
g such that g � �x0 = �x (the de�nition does not depend on the choice of g):
(1) There exists M;N < 1 such that for all �x0; �x00 2 [�x] ; either jS (�x0) \ S (�x00)j � M;

or jS (�x0) nS (�x00)j � N: Because of robust exchangeability, there is no �x0 such that
the two sets S (�x) \ S (�x0) and S (�x) nS (�x0) are in�nite. The claim follows from the
fact that the group action G 7�! X [ S has �nitely many tuple types. Let N be the
smallest constant so that the claim holds.

(2) Let C =
S
fS (�x0) : jS (�x0) nS (�x)j � Ng : Then, GC 7�! C is transitive. That follows

from the fact that for each permutation g such that jS (g � �x) nS (�x)j � N , g 2 GC :

(3) jCnS (�x)j <1: This follows from Lemma 24.
(4) C is complete. Suppose that there is C 0 2 [C] such that CnC 0 is �nite. Then, there

is S (�x) � C and S (�x0) � C 0 such that S(�x) nS (�x0) is �nite. But then, for all such �x
and �x0, S (�x) � C 0 and S (�x0) � C; which implies that C = C 0:

(5) C is robustly block exchangeable. This follows from the facts that S (�x) � C,
jCnS (�x)j <1; S (�x) is robustly block exchangeable, and thatGC 7�! C is transitive.

D.4. Proof of Lemma 43. Fix an in�nite and complete set C0 � X such that GC0 7�! C0
is robustly block exchangeable with block B0: Fix x0 2 C0: Because C0 is complete, there
exists constant M <1 such that for each C 2 [C0] ;

jfB 2 [B0;C0] : B \ C 6= ?gj �M:

Assume that M is the smallest such constant.
Fix D0 � C0 such that x0 2 D and D is a union of M + 1 distinct blocks of C0: Let �d be

an enumeration of set D0: Then, C0 is �d-de�nable. Let T =
��
x; �d
�
: x 2 [x0]

	
: Because of

�nitely many tuple types, T is �nite.
Because GC0 7�! C0 is robustly block exchangeable with block B; for each x 2 [x0] ; there

exists a �nite set C (x) � C0 such that GC0;x 7�! C0nC (x) is highly transitive. Notice that
if x; x0 2 [x0] ; and x and x0 have the same relative type given �d; then x and x0 have the same
relative type given C0; and jC (x)j = jC (x0)j : Let N = maxx2t2T jC (x)j <1.
Let k = 10 (M +N + 1) jBj2 : Suppose that V � [x] is a �nite set such that D0 � V and

the intersection V \ C0 contains at least k distinct blocks of the group action GC0 7�! C0.
For each such V , there exists a k-local UV � [x] ; UV � V such that for each x 2 [x0] ; there
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is a U � UV ; x such that jU j < 3
2

��UV
�� : Because of the de�nition of constantM and because

UV is k-local, for each C 2 [C0],
��C \ UV

�� > M jBj if and only if C 2
�
C0;U

V
�
.

For each x 2 UV ; let i (x) be the number of concepts C that are analogous to C0 relative
to UV and that contain x;

i (x) =
���C 2 �C0;UV

�
: x 2 C

	�� :
Because UV � [x0] is k-local (hence, 1-local), i (x) = i (x0) for each x 2 UV :

(1) We show that
���C0;UV

��� < 1: Indeed, for any C;C 0 2
�
C0;U

V
�
; it must be that��C \ UV

�� ; ��C 0 \ UV
�� � (M + 1) jBj ; and by the choice of M; if C \U = C 0\U; then

C = C 0: A simple counting argument shows that for each x 2 UV

i (x) =
1

jUV j
��C0 \ UV

�� ���C0;UV
��� (D.3)

(2) We show that

i (x) <
1

2

1

jBj
��C0 \ UV

�� : (D.4)

Indeed, there exists B�
0 2 [B0;C0] so that B�

0 \ C = ? for any C 2
�
C0;U

V
�
n fC0g :

In particular, if B^C 2
�
B�^
0 C0;U

V
�
for some C 2

�
C0;U

V
�
and B \ B�

0 6= ?; then
C = C0: Take any x� 2 B�: Take any local U � UV ; x� so that jU j < 3

2
jU j : Then,

jU j �
��UV

��+ ���x 2 g �B� : g 2 GUV ;U

	����UV
��+ jBj ���C0;UV

��� :
The claim follows from equality (D.3).

(3) We show that M � 1: If not, there is C and M di¤erent blocks Bi 2 [B0;C0] such
that Bi\C 6= ? for i �M:W.l.o.g. assume that x0 2 BM and that V is large enough
that B0; ::; BM � C0 \ UV and that

��C \ UV
�� > M jBj : Because GC;U 7�! [x;C;U ]

is block highly transitive with block B; and by the choice of k;

i (x0) � [B1;C;U;B2; :::; BMC
]

� 1

jBj jC \ U j �M � 1

2 jBj jC \ U j :

This yields a contradiction with inequality (D.4).
(4) We show that for each x =2 C0, and each C 2 [C0] such that x 2 C and C \ C0 �

C (x) : On the contrary, suppose that there are x =2 C and C 0 2 [C] such that x 2 C 0
and C 0 \ C and CnC (x) have a non-empty intersection. Assume that V contains
x and at least M + 1 distinct blocks of C: Let n � N be the number of blocks of
C0 \ UV that have a non-empty intersection with C (x) : There is at most one block
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of C0 \ UV that has a non-empty intersection with C: Because GC;x 7�! CnC (x) is
highly transitive, we get

i (x) �
���C 2 �C0;UV

�
: x 2 C and (C \ CV ) nC (x) 6= ?

	��
� 1

jBj (jC \ U j)� n >
1

2 jBj jC \ U j :

where the last inequality holds because of the choices of k and V � UV : This yields
a contradiction with (D.4).

(5) We �nish the proof of the Lemma. Suppose that C0 is not a concept. Then, because
[C0;U ] is �nite, there exists C 3 x0 such that C 2 [C0] n

�
C0;U

V
�
. Let D = C \ U:

Because M � 1; it must be that jDj � jBj.
Because of the previous step, there exists a �nite subset W � C such that for each
x0 2 UV nC; if C 0 2 [C0] and C 0 3 x0; then C 0\C � W: Let B be a block of the group
action GC 7�! C such that B is disjoint with UV and W: Let x 2 B:
Let D = C\UV : For each D0 2

�
D;UV

�
; �nd a BD0 such that D0^BD0 2

�
D^B;UV

�
:

Then, if D0 6= D; then the intersection of BD0 and B is empty. (Otherwise, there
would be x0 2 D0nD and x0 2 C 0 such that the intersection of C 0 and B is non-empty.
But that would contradict the choice of B.) It follows that BD0 and BD00 are disjoint
for all distinct D0; D00 2

�
D;UV

�
.

Take any k-local U � UV ; x. Because U intersects C at at least two distinct blocks
and M = 1, it must be that C 2

�
C0;U

V
�
: Thus,

jU 0j � jU j+ jBj
���D;UV

��� � jU j+ jBj jU jjD0j
� 2 jU j ;

where the last inequality follows from the fact that jD0j � jB0j : But that contradicts
the choice of UV :

Appendix E. Coordinate system

In this part of the Appendix, we prove the Lemmas stated in Section 7.2.8. Below, we
work with the action of group G on the space of elements X and coin�nite concepts S: We
always assume that the group action G 7! X is 1

20
-compact and that the thesis of Lemma

37 holds:

E.1. Proof of Lemma 4. Fix a correlation class R of robustly exchangeable concepts: For
any two concepts C;C 0 2 R; let d (C;C 0) � C be the �nite exceptional set omitted by the
correlating function jC;C0 : Cnd (C;C 0)! C 0nd (C 0; C) ; where jC0;C = (jC;C0)�1 :
For each concept C and each x 2 C; de�ne set

T 0 (x;C) = f(jC;C0 (x) ; C 0) : C 0 2 R; x =2 d (C;C 0)g :
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Then, for each x; x0 2 C; if x 6= x0; then sets T 0 (x;C) and T 0 (x0; C) are disjoint. For each
n > 0; de�ne

T n (x;C) = T n�1 (x;C) [
[

(x0;C0)2Tn�1(x;C)
T 0 (x0; C 0) , and

T1 (x;C) =
[

n
T n (x;C) :

Notice that T1 (x;C) = T1 (x0; C 0) for each (x0; C 0) 2 T1 (x;C) : Finally, de�ne

T (x;C) = fx : (x;C) 2 T1 (x;C) for some C 2 Rg :

Fix x0 2 C0 2 R and T 2 [T (x0; C0)] : We show that

Lemma 44. For each C 2 R, jT \ Cj � 1:

Proof. Suppose not and that there are x; x0 2 T \ C such that x 6= x0. We can assume
that (x0; C) 2 T1 (x;C). (Indeed, if (x0; C 0) 2 T1 (x;C) for some C 0 6= C; then using the
fact that C and C 0 are robustly exchangeable concepts, we can show that d (C 0; C) = fxg
and that jC0;C (x0) 2 T 0 (x;C 0).) By construction, there exists a �nite sequence (x;C) =
(x0; C0) ; :::; (xn; Cn) = (x0; C) such that for each m < n; jCm;Cm+1 (xm) = xm+1 and the
group actions GCm;Cm+1 7�! [xm;Cm; Cm+1] and GCm;Cm+1 7�! [xm+1;Cm; Cm+1] are highly
transitive.
We show that there exists C 0 2 R such that the group actionsGC0;Cm;Cm+1 7! [xm;Cm; Cm+1; C

0]

and GC0;Cm;Cm+1 7! [xm+1;Cm; Cm+1; C
0] are highly transitive for each m < n: Pick any

C 2 R and let �x be a code of C 0 (its existence follows from Lemma 34): For each �x0 2 [�x] and
each m; let Fm (�x0) be a set such that GCm;Cm+1;�x � Fm (�x0) = Fm (�x

0) and the group action
GCm;Cm+1;�x 7�! [xm;Cm; Cm+1; �x

0] nnFm (�x0) is highly transitive. Let f � = supm jFm (�x)j : Fix
N > mf � and, using Lemma 37, �nd 6-local set U � �x; x1; :::; xn such that for each m;

jU \ Cmj � N:

Then, the group actionsGCm;Cm+1;U 7�! [xm;Cm; Cm+1]\U andGCm;Cm+1;U 7�! [xm+1;Cm; Cm+1]\
U are 6-transitive and, by the CFSG, highly transitive. Let �m be the fraction of tuples
�x0 2 [�x] \ Uk such that xm =2 Fm (�x

0) and let � be the fraction of tuples �x0 2 [�x] \ Uk such
that x =2 Fm (�x0) for each m: Then,

�i � 1�
1

N
f � and � (�x) � 1�

X
m

(1� �i) � 1�
1

N
mf�:

Thus, � > 0; and there exists �x0 such that x =2 Fi (�x0) for each player i: Find the unique C 0
so that �x^C s analogous to �x0^C 0: The claim follows.
Because jC0;C0 (x) 6= jC0;C0 (x

0) ; there existsm < n such that jCm;C0 (xm) 6= jCm+1;C0 (xm+1) :

But this contradicts the fact that pairs of elements (xm; xm+1), (xm; jCm;C0 (xm)) ; and (xm+1; jCm;C0 (xm+1))
are correlated under the action of group GCm;Cm+1;C0 � GCm;Cm+1 : �
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We show that T is a concept. By construction, for each x 2 T; there exists C such that
T = T (x;C) : Because there are �nitely many tuple types of concepts, j[T ;x]j � j[C;x]j <1,
and the bound is uniform across x:
We assume w.l.o.g. that T is coin�nite. (If not, replace T with the largest coin�nite

concept T 0 � T st. T is T 0-algebraic: Such T 0 exists, and it is unique by Lemma 36). Thus,
T 2 S:
Take any C 2 R and consider the group action GC 7! fT (x;C) : x 2 Cg : By Lemma 3,

there exists robustly exchangeable concept V � [T ] such that jV n fT (x;C) : x 2 Cgj <1:

BecauseGC 7! fT (x;C) : x 2 Cg is robustly exchangeable, it must be that fT (x;C) : x 2 Cg �
V and jC;V (x) = T (x;C) is the correlating function.
Let C� be the collection of concepts obtained in such a way for all equivalence classes R:

By construction, all concepts C 0 2 C0 are mutually independent, each concept C 2 C is
correlated with exactly one concept C 0 2 C� such that d (C;C 0) is empty; and that for each
x 2 C 0; x 2 jC;C0 (x) :
Finally, we show that the concepts in C� are mutually disjoint. Suppose not and that

C;C 0 2 C� are two distinct concepts with non-empty intersection. By Lemma 38, the inter-
section must consist of exactly one element fxg = C \ C 0. That implies that j[C 0;C]j =1:

Find the largest coin�nite concept u � pC 0 and such that C 0 is u-algebraic. Such a concept
exists and it is unique by Lemma 36: Then, x  u: Notice that fx0 2 C : x0 � ug � C is a
concept. By Lemma 38, there are two possibilities:

� x is the unique element of C such that x  x0: In such a case, by Lemma 3, there
exists a robustly exchangeable concept of concepts C 00 � fu0 : u0^x0 2 [u^x;C]g and
such that x0 2 C 00: Clearly C 00 must be correlated with C: But then, jC00;C (x0) � x:

This contradicts the fact that x  x0,
� for all u 2 C; u  x0: Then, x0 is is C-algebraic (because x0 is a concept), and, because
x0 is C 0-algebraic; it must be that C 0 is C-algebraic: This yields a contradiction with
the fact that j[C 0;C]j =1.

E.2. Proof of Lemma 5.

(1) This follows from the fact that there are �nitely many concepts over each x 2 X:
(2) Suppose that x 2 C and x0 2 S� such that x � x0; x 6= x0: An argument from the end

of the proof of Lemma 4 shows that it must be that u � x0 for each u 2 C:
(3) Let L � S� be a �nite set and let �L be an enumeration of L: Suppose that jfC : L (C) = Lgj =

1: Because of the �nitely many types of concepts, there exists C such that
���C; �L��� =

1: Let x be the unique coin�nite concept such that C is x-algebraic (such a concept
exists and is unique by Lemma 36). Then,

���x; �L��� =1: By Lemma 3, there exists a
robustly exchangeable concept C 0 such that C 0n

�
x; �L

�
is �nite. Find concept C 00 2 C�
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that is correlated with C 0: Then, for all x0 2 C 0\
�
x; �L

�
; x0 is contained in a di¤erent

element of concept C 00: Because there are in�nitely many of such x0; and because each
such x0 is associated with a disjoint and �nite set of concepts c 2 jfC : L (C) = Lgj ;
it must be that set L contains in�nitely many elements of C 0: But this contradicts
the fact that L is �nite.

E.3. Proof of Lemma 6. Say that set L � S� is upper, if for each S 2 L, L (S) � L:

We show that for each concept C 2 C�; each �nite upper set L; each enumeration �L of
L; G�L \GC 7�! CnL is highly transitive. First, suppose that L = L (s) for some (hence, by
Lemma 5, all) s 2 C: Then, GL � GC , and by Lemma 5, [GL : GC ] < 1: Because set L is
�nite, the index [GL : G�L] =

�
�L;L

�
is �nite, and

[GC : G�L \GC ] � [GL : G�L \GC ] � [GL : G�L] [GL : GC ] <1:

Because �nite index subgroups of highly transitive group actions are highly transitive (Lemma
13), G�L \ GC 7�! C is highly transitive.11 More generally, assume that L � L (s) for some
(hence, all) s 2 C: The proof follows induction on the size of set jLnL (s)j : Suppose that L
is an upper set, L0 = L [ fS 0g is an upper set for some s0 2 C 0 2 C�, and G�L \GC 7�! CnL
is highly transitive for some enumeration �L of L: If S 0 2 C (and C 0 = C), then the claim is
trivial. So, we assume that S 0 =2 C: Notice that

[G�L \GC : G�L \GC \GC0 ] � [GL : G�L] [GL : GC0 ] <1:

Thus, the group action G�L \GC \GC0 7�! CnL is highly transitive. If G�L^S \GC \GC0 7�!
CnL is not highly transitive, then C and C 0 are G�L-correlated, which contradicts the fact
that C and C 0 are independent.
Next, suppose that s; s0 2 C 2 C�: We show that for each �nite set Z � X [ S�; there

exists a permutation gZ 2 G such that gZ � (s; s0) = (s0; s) ; gZ � x = x and � (gZ � S) = � (S)

for each S 2 L (x) for each x 2 Zn (s [ s0) : Indeed, the existence of such a permutation
follows from a repeated application of the above observation.
For each �nite A � Z; let

VA = fx 2 X [ S� : f� (S) : S 2 L (x)g = Ag :

We show below that set VA is necessarily �nite. Then; P = fVA : A � Z; A is �niteg is a
partition of X [ S�:
Finally, let Z1 � Z2 � ::: be an increasing sequence of �nite sets with union equal to

X [ S�. Let g1 = gX1 and gi = gZi+1 � g�1Zi : The sequence fgig satis�es the assumption of
Lemma 30 with partition P. The result follows.

11Recall that the de�nition and properties of the subgroup index are stated in Section B.1.1.
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Lemma 45. VA is �nite for each �nite A � Z:

Proof. The claim follows by induction on inclusion and Lemma 5. �

E.4. Proof of Lemma 8. We need to show that for each S 2 S0, each tuple �x0 � E (S) ;

each tuple �x � XnE (uS) ; there exists a tuple �x0 � E (tS) such that �x0^�x � �x0^�x0. Let
L =

[
x2�x

L (x) ntS: Using Lemma 6, we can �nd a permutation h 2 G�x0 such that for each

S 2 L; � (h � S) < L: For each x 2 �x x =2 E (uS) ; which implies that L (x) \ L (S)  L (S) :

Thus, h � L (x)  L (S) ; which implies that h � �x � E (tS) :

E.5. Proof of Lemma 7. Recall the de�nition of set VA from the proof of Lemma 6. For
each �nite B � Z; de�ne UB =

[
fVA : A � Bg : Then, UB is �nite.

Fix bijection  : Z! N: Take any increasing sequence of �nite sets B1 � B2 � ::: whose
union is equal to X[S�: Using Lemma 6, we can �nd an increasing sequence of permutations
gi such that for each A � Bi; gi � VA = V(A): Using the argument from Lemma 30, we can
show that, possibly by taking subsequences, there exists a pointwise limit � = limi!1 gi
that is a bijection � : X ! X0 that preserves relations.
Take any permutation g 2 G and consider a bijection g� : X0 ! X0 de�ned as

g� (x) = � � g � ��1 (x) :

Because g� preserves relations, g� extends to ĝ� 2 G such that ĝ�jX0 = g�: By choosing
proper sequences of permutations from Lemma 6, together with an application of Lemma
30, we can show that there exists a permutation g0 2 Gnc such that g0jX0 = gh: This shows
that the group actions G 7�! X and Gnc 7�! X0 are isomorphic.

E.6. Finite family E# (S). In order to ensure that the group action HS 7�! E (S) is �nite,
it is useful to de�ne two other families of sets. First, we expand sets E (:) to include the
"coordinates" S�: For each S 2 S0; de�ne the set of elements x such that S is the smallest
member of collection S0 that includes x;

E� (S) =
n
x 2 X [ S� : S =

\
(L (x) \ S�0 )

o
:

Then, E (S) = E� (S) \X: Second, we de�ne �nite approximations of E� (S): For each m;
let

Em (S) = E� (S) \ (X0 [ fS 2 S� : �m � � (S) < 0g) :
Then, each set Em (S) is �nite, and for each g 2 Gnc; g �Em (S) = Em (g � S) : Let E� (L) =S
S2LE

� (S) and Em (L) =
S
S2LEm (S) for each set L � S0. We show the following result.

Lemma 46. For each S 2 S0; the group action Gnc
S 7�! E� (S) has �nite orbits andh

E� (S);Gnc; E� (tS)
i
=
h
E� (S);Gnc; XnE� (uS)

i
: (E.1)
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There exist constants mS � 1 for S 2 S0 such that if E# (S) = EmS
(S), thenh

E# (S);Gnc; E# (tS)
i
=
h
E# (S);Gnc; XnE� (uS)

i
:

First, �x S 2 S0. We show that Gnc
S 7�! E� (S) has �nite orbits. Take any g 2 Gnc

S . Then,
for each x 2 E� (S) ; � (g � L (x)) = g�L (x) : (Indeed, for each S 0 2 L (x) ; if S 0 is positive, then
S 0 2 L (S) and � (g � S 0) 2 � (L (x)) ; if S 0 is negative, then � (g � S 0) = � (S 0) 2 � (L (x)) :)
Additionally, if x 2 S�; then x is negative, and � (g � x) = � (x) : Thus, g � x 2 V�(L(x)) if
x 2 X and g � x 2 V�(L(x)[fSg) if x 2 S�: Because sets VA are �nite (Lemma 45), it must be
that Gnc

S 7�! E� (S) has �nite orbits.
Next, we show equality (E.1). Suppose that tuples �x; �x0 � E� (S) are such that for each

tuple �x0 � E� (tS) ; there exists a permutation h 2 Gnc such that h � �x0 = �x0 and h � �x = �x0:
We show that for each �x0 � XnE� (uS) ; there exists g 2 Gnc such that h � �x0 = �x0 and
h � �x = �x0: Indeed, take any �x0 � XnE� (uS) : By conditional independence (Lemma 7),
there exists a permutation g0 2 G such that g0 � �x0 � E� (tS) and g0 � �x^�x0 = �x^�x0: Find
permutation h such that h � (g0 � �x0) = (g0 � �x0) : Let g00 = g0�1hg0: Because � (g00 � S) = � (S)

for each S 2
[
fL (x) : x � �x^�x0^�x0g ; one can use Lemmas 6 and 30 to �nd g 2 Gnc such

that gj�x^�x0^�x0 = g00j�x^�x0^�x0.
Because of (E.1) and the fact that set Em (S) is �nite, for each S 2 S0; there exists kS (m)

such that h
Em (S);G

nc; EkS(m) (tS)
i
=
h
Em (S);G

nc; XnE� (uS)
i
:

For S 2 S0 such that if S 0 � S and S 0 2 S0; let mS = 1: Recursively de�ne

mS = max
S02uS

�
kS (mS0)

�
:

The result follows.

E.7. Subgroup copies. Next, we describe conditions that imply that the group actions
H 7�! X0 and Gnc 7�! X0 are isomorphic.
For each subset A � X [ S�; two permutations h and h0 are A-copies, if hjA = h0jA: Two

subgroups H;H 0 � G are A-copies; if for each h 2 H; there exists h0 2 H 0 (and vice versa)
such that h and h0 are A-copies. Thus, H and Gnc are X0-copies, then their actions on X0

are isomorphic.

Lemma 47. Suppose that S 2 S0 and sets W 0 = W [ [S;Gnc] � S0 are such that for each
S 0 2 W 0; L (S 0) � W: Suppose that H and Gnc are E# (W)-copies.
(1) If H contains permutations of (s; s0)-type for each s; s0 2 [S;Gnc] ; then H and Gnc

are
�
E# (W) [W 0�-copies:
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(2) If, additionally,
h
E# (S);Gnc; E# (tS)

i
=
h
E# (S);H;XnE� (uS)

i
; then H and Gnc

are E# (W 0)-copies:

We start with the �rst part. Take any permutation g 2 Gnc and �nd its E# (W)-copy
h0: Enumerate C1; C2; ::: all concepts Ci 2 C� such that the intersection Ci \ [S;Gnc] is non-
empty. Then, C 2 [S;Gnc] and g �C = h0 �C: Because H contains permutations of (s; s0)-type
for each s; s0 2 C \ [S;Gnc] ; we can �nd a sequence of permutations hi such that hi�1 and hi
are E# (W 0) nC \ [S;Gnc]-copies and hi and g are C \ [S;Gnc]-copies. By Lemma 30, there
exists limit h = limi!1 hi such that h and g are

�
E# (W) [W 0�-copies

Second, assume that
h
E# (S);Gnc; E# (tS)

i
=
h
E# (S);H;XnE� (uS)

i
: Then, by Lemma

46, h
E# (S);Gnc; E# (tS)

i
=
h
E# (S);H;XnE� (uS)

i
Take any g 2 Gnc and �nd its E# (W) [ W 0-copy h0: We show that there exists hS such
that hS and h0 are E# (W [W 0) nE# (S) -copies, and hS and g are E# (S)-copies. Then,
using Lemma 30, we can show that there exists a permutation h such that h and g are
E# (W [W 0)-copies.
Because h0; g 2 Gnc; there is a permutation g0 = gh�10 2 Gnc such that g0 is constant on

E# (W) n [ W 0 and g0h0 = g. By the second part of Lemma 46, there exists permutation
h0 2 H such that h0 is constant on XnE� (uS) and h0 and g0 are E# (S)-copies. Thus,
hS = h0h0 and h0 are E# (W [W 0) nE# (S)-copies, and hS and g are E# (S)-copies.

E.8. Proof of Lemma 9. Fix an increasing sequence of subsets ? = S00 � S10 ::: � Sm0 = S0
such that for each k � 0; there exists S 2 S0 such that Sk+10 = Sk0 [ [S;Gnc] and L (S) � Sk0 :
Say that subgroupH � Gnc has �nite orbits up to level k; if for each S 2 Sk0 ;

���hE� (S);Hi��� <
1:

By induction on k � 0; we show that there exists H � Gnc with �nite orbits up to level k
and such that H and Gnc are E#

�
Sk0
�
-copies.

The inductive claim is immediate when k = 0: Fix k � 0 and suppose that H � Gnc

has �nite orbits up to level k and H and Gnc are E#
�
Sk0
�
-copies. Let S 2 S0 be such that

Sk+10 = Sk0 [ [S;Gnc] : Let �e#; �e; and �e4 be enumerations of, respectively, E# (S) ; E (S) ;
and E� (tS) :
Let H� be the set of all permutations h0 2 Gnc such that h0jE�(Sk0 ) 2

n
hjE�(Sk0 ) : h 2 H

o
:

Then, H� contains permutations (x; x0)-type for each x; x0 2 C and L (C) � Sk0 : By Lemma
47, H� and Gnc are E#

�
Sk0
�
[ Sk+10 -copies and for each s0 2 [S;Gnc] ; there exists gS0 2 H�

such that gS0 � S = S 0:
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There exists F � � H�
S such that

���hE� (S);F �i��� <1; F � and H�
S are E

� (tS)-copies, andh
�e#;Gnc; E# (tS)

i
=
n
f � �e : f 2 F � \H�

XnE�(uS)

o
:

By Lemma 46, there exists a �nite set F0 � Gnc
S \GXnE�(uS) such that

h
�e#;Gnc; E# (tS)

i
=�

f � �e# : f 2 F0
	
: Additionally, because H� has �nite orbits up to level k; there is a �nite

set F1 such that for each h 2 H�
S; hjE�(tS) 2

�
f jE(tS) : f 2 F1

	
: Because Gnc

S 7�! E� (S) has
�nite orbits (Lemma 8), Lemma 29 implies that there exists a subgroup F � � F0; F1 such

that
���hE� (S);F �i��� <1:

For each permutation h 2 H�
S; there exists a permutation h0 2 H�

XnE�(uS) such that

h0h 2 F �: Indeed, because F � and H�
S are E

� (tS)-copies, for each h 2 H�
S; there exists

f 2 F � such that hjE�(tS) = f jE�(tS): Hence, f � �e# 2
�
h � �e#;Gnc; h � �e�

�
: By Lemma 46,

f � �e# 2
h
h � �e#;Gnc; XnE� (uS)

i
: The claim follows.

For each S 0 2 [S;Gnc] ; de�ne

G (S 0) = gS0 � [�e;F �] :

For each permutation h 2 H�; for each S 0 2 [S;Gnc] ; there exists a permutation pS0 (h) 2
H�
S0\H�

XnE�(uS0) such that pS0 (h)h�G (h
�1 � S) = G (h � S) : Indeed, notice that g�1S0 hgh�1�S0 2

H�
S: By the pervious observation, there exists h

00 2 H�
S \H�

XnE�(uS) such that

h00g�1S0 hth�1�S0
�
g�1h�1�S0G

�
h�1 � S 0

��
= g�1h�1�S0G

�
h�1 � S 0

�
= [�e;F �] :

Let pS0 (h) = gS0h
00g�1S0 :

Let S1; S2; ::: be an enumeration of [S;Gnc] : By Lemma 30, for each permutation h 2 H�;

there exists a permutation

p (h) = (::: � pS2 � pS1) (h) :

Then, p (h) jE#(Sk0 ) = hjE#(Sk0 ) and for each S
0 2 [S;Gnc] ; p (h) � G (S 0) = G (p (h) � S 0) =

G (h � S 0) : Moreover, if h is a permutations of (x; x0)-type for some x; x0 2 C \ S0 and
L (C) � Sk0 ; then pSm (h) is a permutation of (x; x0)-type for each m; and p (h) also is a
permutation of (x; x0)-type.
Let H 0 = fp (h) : h 2 H�g : Then, j[�e;H 0]j = jG (S)j < 1 and H 0 has �nite orbits up to

level k + 1:By Lemma 47, H 0 and Gnc are E#
�
Sk+10

�
-copies:

Appendix F. Decomposition of uncertainty

F.1. Borel decomposition of �nite invariant distributions. The �rst result describes a
version of the Borel decomposition argument appropriate for distributions that are invariant
with respect to �nite group actions.
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Let B be a �nite regular of orientations. Then, B has a group action on itself: B 7�! B

de�ned so that for each b; b0 2 B; b � b0 = b � b0 (the left part of the formula de�nes the group
action, and the right side corresponds to a composition of orientations).
Let A be a �nite set. Let H 7�! A [ B be a group action so that H � B = B; and the

group actions B 7�! B and H 7�! B are isomorphic. For each h 2 H; let bh 2 B be the
unique orientation such that for each b 2 B; h � b = b� bh: Notice that if h 2 Hb; then bh = id
and h 2 H�b for any enumeration �b of B: Let HidB denote the subgroup of permutations that
keep all elements of B �xed:
Some notation is useful. Suppose that Z is a set, A is a countable set, and H 7�! A is a

group action. De�ne the action H 7�! ZA of group H on functions � : A! Z;

(h � �) (a) = �
�
h�1 � a

�
for each a 2 A:

Similarly, de�ne the group action the action H 7�! ZA of group H on functions � : B ! Z:

For each (possibly countably in�nite) tuple �a of elements of A; de�ne mapping �a : ZA !
Z jAj from that assigns functions � with sequences of elements of Z;

�a (��) = (� (a1) ; � (a2) ; :::) :

The inverse mapping �a�1 takes sequences of elements of Z into functions �: Then,

�a (h � �) =
�
h�1 � �a

�
(�) : (F.1)

Let ! : ZA ! �ZB be a collection of conditional distributions over functions � 2 ZB

given functions � 2 ZA: Conditional distributions ! are H-invariant, if for all � 2 ZA, all
measurable sets U � ZB; and all permutations h 2 H;

! (h � � 2 U jh � �) = ! (� 2 U j�) :

The left-hand side is a conditional distribution given that the realization of variables on set
A is equal to A:

Lemma 48. Let A be a �nite set. Let B be a �nite regular set of orientations. Let H 7�!
A [ B be a group action so that H � B = B; and the group actions B 7�! B and H 7�! B

are isomorphic. Suppose that conditional distributions ! : ZA ! �Y B are H-invariant. Let
�a� be an enumeration of A:
Then, there exists a measurable function f : [0; 1) � Z jAj ! Z such that if � is uniformly
distributed random variable, then for each � : A! Z;

(1) for each h 2 HidB ,

f (�; �a� (�)) = f (�; �a� (h � �))
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(2) for any selection of permutations hb 2 H so that b = hb � idB; the joint distribution
of variables

f (b (�) ; (hb � �a�) (�)) ; b 2 B (F.2)

is equal to the conditional distribution ! (:j�) :

Because of the �rst property, the values of terms in (F.2) do not depend on the choices of
permutations hb: Indeed, if b = h � b� = h0 � b�; then h0h�1 2 HidB , and for each �;

f (b (�) ; (h � �a) (�)) = f
�
b (�) ;

�
h0h�1h � �a

�
(�)
�

= f (b (�) ; (h0 � �a) (�)) :

Proof. Fix interval I � [0; 1) such that fb (I) : b 2 Bg is a partition of the interval [0; 1)
into jBj disjoint sets. For each � 2 [0; 1) ; there exists unique b� so that � 2 b� (I) (or,
alternatively, b�1� (�) 2 I).
De�ne the action H 7�! Z jAj; of group H on sequences of elements of Z jAj;

h � �z := �a�
�
h � (�a�)�1 (�z)

�
=
�
h�1 � �a�

� �
(�a�)�1 (�z)

�
:

Then, for each h 2 H; and each � : A! Z;

h � (�a� (�)) = �a�
�
h � (�a�)�1 (�a� (�))

�
= �a� (h � �) : (F.3)

(The second equality follows from (F.1).)Then, for each h; h0; and �z,

h0 � (h � �z) = �a�
�
h0 � (�a�)�1

�
�a�
�
h � (�a�)�1 (�z)

���
= �a�

�
h0 �
�
h � (�a�)�1 (�z)

��
= �a�

�
h0h � (�a�)�1 (�z)

�
= (h0h) � �z:

Consider the action HidB 7�! Z jAj of the subgroup that keeps all elements of B �xed.
Because HidB is �nite, the type of each element �z is �nite, j[�z;HidB ]j < 1: One can �nd a
measurable subset E � Z such that for each �z; set E contains exactly one element of the
type of y;

E \ [�z;HidB ] = fr (�y)g ;

for some r (�y) 2 Z jAj:
Let �I be the uniform distribution on the interval I: By the standard Borel decomposition

result (for example, see Kallenberg (2005)), there exists a function � : I � Z jAj ! ZB such
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that if u is chosen from �I , then the distribution of � (u; �z) 2 ZB is equal to !
�
:j (�a�)�1 (�z)

�
:

Because of H-invariance of !; for each measurable U � ZB; for each h 2 H;

�I (� (u; �z) 2 U) = !
�
� 2 U j (�a�)�1 (�z)

�
= !

�
� 2 h�1 � U jh � (�a�)�1 (�z)

�
= !

�
� 2 h�1 � U j (�a�)�1 (h � �z)

�
= �I (h � � (u; h � �z) 2 U) ; (F.4)

and the distribution of variables h � � (u; h � �z) is equal to !
�
:j (�a�)�1 (�z)

�
:

For each � 2 I; each b 2 B; any hb so that b = hb � idB; and each �z 2 Z jAj; de�ne

f (b (�) ; �z) = �
�
�; r

�
h�1b � �z

��
(b) :

Notice that the de�nition does not depend on the choice of hb: Indeed, if b = h � idB = h0 � idB;
then (h0)�1 h 2 HidB ; and�

(h0)
�1
h
�
� h�1 � �z =

�
(h0)

�1
hh�1

�
� �z = (h0)�1 � �z:

The latter implies that h�1 � �z and (h0)�1 � �z have the same type under the group action with
respect to the group action HidB 7�! Z jAj; and

�
�
�; r

�
h�1 � �z

��
(b) = �

�
�; r

�
(h0)

�1 � �z
��
(b) :

We show that function f satis�es the �rst property stated in the Lemma. Let �z = �a� (�) :
Fix b 2 B and hb 2 H so that b = hb �idB : Suppose that h 2 HidB : Then, h

0 = hbhh
�1
b 2 HidB ;

and
h�1b � (h � �z) =

�
h�1b h

�
� z =

�
h0h�1b

�
� z = h0 �

�
h�1b � �z

�
;

which implies that h�1b � (h � �z) and h�1b � �z have the same type with respect to the group
action HidB 7�! Z jAj: Thus, r

�
h�1b � (h � �z)

�
= r

�
h�1b � �z

�
; and by (F.3),

f (b (�) ; �a� (h � �)) = f (b (�) ; h � �z)
= �

�
�; r

�
h�1b � (h � �z)

��
(b)

= �
�
�; r

�
h�1b � �z

��
(b)

= f (b (�) ; �z) = f (b (�) ; �a� (�)) :

We show that function f satis�es the second property. Let �z = �a� (�) : For each b0 2 B;

each � 2 I; and any selection hb 2 H so that b = hb � idB,

f (b (b0 (�)) ; hb � �z) = �
�
�; r

�
h�1b�b0 � (hb � �z)

��
(b � b0)

= �
�
�; r

�
h�1b0 � �z

��
(hb0 � b)

= � (�; h � �z)
�
h�1 � b

�
= h � � (�; h � �z) (b) (F.5)
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for some h so that h � b0 = idB : By (F.4), the joint distribution of variables (F.5) is equal to
!
�
:j (�a�)�1 (�z)

�
: �

F.2. Proof of Lemma 10. We assume notation from Section 7.3. We start with some
notation. Recall that U consist of shocks �S identi�ed by concepts S 2 S0: In what follows,
we identify shocks with the associated concepts. So, the joint realization u of all shocks in
U is treated as an element of space u 2 [0; 1)S0.
We de�ne the action of group H on the joint realization of shocks,H 7�! [0; 1)S0 : Because

X0[O is a system with orientations, for each S 2 t � S0; there exists an orientation q (S) 2
Qt such that for each (�S0 ; q0) 2 O; h � (�S0 ; q0) =

�
�h(S0); q � q (S 0)

�
: For each u 2 [0; 1)U ; let

(h � u) (S) = q (S) (u (h � S)) for each S 2 S0: (F.6)

Then, for each tuple of orientations �o � O;

(h � �o) (u) = �o (h � u) : (F.7)

Slightly abusing notation, we write (h � u0) 2 [0; 1)h(S
0) for any u0 2 [0; 1)S

0
and some subset

of concepts S 0 � S0.
We move to the proof of the Lemma. The proof goes by induction on the set of types

T . Take any set T0; let S0 =
[
T0; and O0 =

[
S2S0

OS: Suppose that there exist tuples

of orientations �oo for all o 2 O0 that satisfy the thesis of the Lemma for all H-invariant
distributions !� 2 �

�
ZO0

�
that satisfy CI, and that additionally, each �oo contains each

orientation in set
[
fOS0 : S

0 2 S; S 0 ! Sg :
Suppose that T = T0 [ ft0g and T0 is an upper subset of T; i.e., for each S 2 t 2 T0; for

each S 0 2 t0 2 T; if S � S 0; then t0 2 T0. Let !� be an H-invariant distribution that satis�es
CI. For each t 2 T0; �nd ot^�ot-symmetric functions f t that decompose margO0 !

� as in the
thesis of the Lemma.
From now on, �x concept S� 2 t0: De�ne the set of orientations

OtS� =
[
fOS0 : S

0 2 tS�g :

Then, for each o 2 OS�, � (o) is conditionally independent from f� (o0) ; o0 =2 OS�g ; given
f� (o0) ; o0 2 OtS�g :
Let na = jtS�j, nb = jOtS�j ; and n = na + nb: Fix orientation o� = (S�; id) 2 OS� :

Find a tuple �o�a that contains exactly one orientation of each concept in set tS�: Find an
enumeration �o�b of set OtS� : Let �o� = �o�a^�o�b: De�ne mapping (o�^�o�a)�1 : [0; 1)n

a+1 !
[0; 1)tS

�[fS�g so that

o�^�o�a
�
(o�^�o�a)�1 (u)

�
= �u
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for each �u 2 [0; 1)n
a+1. We have

h�1 � (o�^�o�a)�1 ((h � o�^�o�a) (u)) = h�1 � (o�^�o�a)�1 (o�^�o�a (u))
= h�1 � (h � u) jtS�[fS�g = ujtS�[fS�g; (F.8)

where h � u is de�ned in (F.6).
Consider a marginal distribution !̂ = margOS�[OtS� !

� 2 �
�
ZOtS�[OS�

�
: Then, the con-

ditional distributions ! (:j�� (o0) ; o0 2 OtS�) over functions � : OS� ! Z are H-invariant in
the sense described in part F.1 of this appendix. By Lemma 48, there exists a measurable
function f : [0; 1)�Znb ! Z such that for each � : OtS� ! Z; for each h 2 H st. h � o� = o�;

f
�
�S� ; �o

�b (�)
�
= f

�
� (S�) ; �o�b (h � �)

�
(F.9)

and for any selection of permutations ho 2 H so that o = ho�o�; o 2 OS� ; the joint distribution
of random variables

f
�
o (�S�) ;

�
ho � �o�b

�
(�)
�
; o 2 OtS� (F.10)

is equal to the conditional distribution !̂ (:j�) :
De�ne a measurable function f t0 : [0; 1)n

a

! Z so that for each �u 2 [0; 1)n
a+1 ;

f t0 (�u) = f (z0; z1; :::; znb) ; where

where z0 = (q�)
�1 (u1) ; and for each m � nb; S�bm 2 tm and

zm = f tm
��
o�bm^�o

o�bm
� �
(�o�^�o�a)�1 (�u)

��
.

We show that function f is o�^�o�-symmetric. Take any permutation h 2 HS� such that
h � o� = o�: We need to show that for each u 2 [0; 1)S0

f t0 ((o�^�o�a) (u)) = f t0 ((h � o�^�o�a) (u)) :

Indeed, by (F.9),

f t0 (�u)

= f

0@ (o�)�1 (u1) ; f
t1

��
o�b1 ^�o

o�b1

� �
(�o�^�o�a)�1 (�u)

��
;

:::; f tnb
��
o�b
nb
^�oo

�b
nb

� �
(�o�^�o�a)�1 (�u)

��
1A

= f

0@ (o�)�1 (u1) ; f
t1

�
h�1 �

�
o�b1 ^�o

o�b1

� �
(�o�^�o�a)�1 (�u)

��
;

:::; f tnb
�
h�1 �

�
o�b
nb
^�oo

�b
nb

� �
(�o�^�o�a)�1 (�u)

��
1A :
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By (F.7) and (F.8), if �u = (h � o�^�o�a) (�) ; then the above is equal to

= f

0@ (o�)�1 (u1) ; f
t1

��
o�b1 ^�o

o�b1

� �
h�1 � (�o�^�o�a)�1 (�u)

��
;

:::; f tnb
�
h�1 �

�
o�b
nb
^�oo

�b
nb

� �
(�o�^�o�a)�1 (�u)

��
1A

= f
�
(o�)�1 (u1) ; f

t1
��
o�b1 ^�o

o�b1

�
(�jtS�)

�
; :::; f tnb

��
o�bnb^�o

o�b
nb

�
(�jtS�)

��
= f t0 ((o�^�o�a) (�)) :

For each o 2 S 2 t0; �nd tuple �oo such that o�^�o� and o^�oo are analogous. Suppose that
u 2 [0; 1)S0 is a realization of shocks, and let � : OtS ! Z be such that

� (o0) = f t
�
o0^�oo

0
(u)
�
for o0 = (�S0 ; p) 2 OtS; S 0 2 t \ tS; and t 2 T:

We show that the joint distribution of variables

f t0 (o^�oo (�)) ; for o 2 OS and S 2 t0

is equal to is !̂ (:j�) : Let ho 2 HS be such that o = ho � o�: By symmetry of f t for all t 2 T
and by (F.7);

f t0 (o^�oo (�))

= f t0 ((ho � o�) (�) ; (ho � �o�) (�))
= f t0 (o� (ho � �) ; �o� (ho � �))

= f
�
o (� (S�)) ; f t1

��
o�b1 ^�o

o�b1

�
(ho � �)

�
; :::; f tnb

��
o�bnb^�o

o�b
nb

�
(ho � �)

��
= f

�
o (� (S�)) ; f t1

��
ho � o�b1 ^�oo

�b
1

�
(�)
�
; :::; f tnb

��
ho � o�bnb^�o

o�b
nb

�
(�)
��

= f
�
o (� (S�)) ; �

�
ho � o�b1

�
; :::; �

�
ho � o�bnb

��
= f

�
o (� (S�)) ;

�
ho � �o�b

�
(�)
�
:

The claim follows from the fact that the joint distribution of (F.10) is equal to !̂ (:j�) :

Appendix G. Proof of sufficiency part of Theorem 3

We begin with two technical results.

Lemma 49. For any two analogous tuples of orientations �o � �o0; there is a measurable
bijection � : [0; 1)U ! [0; 1)U such that ��1 is measurable, � preserves measure �U, i.e., for
each measurable E � [0; 1)U ; �U (E) = �U (� (E)) ; and

�o0 (� (u)) = �o (u) :
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Proof. Let �o = ((�1; q1) ; :::; (�n; qn)) ; and �o0 = ((�01; q
0
1) ; :::; (�

0
n; q

0
n)) : By the de�nition of a

system of orientations, for any m;m0 � n, �m = �m0 if and only if �0m = �0m0 : Thus, there
is a bijection � : U ! U such that � (�m) = �0m for each m � n; and � (�) = � for each
� =2 f�1; :::; �ng [ f�01; :::; �0ng : Also, for each � 2 f�1; :::; �ng ; there is q� 2 Q� such that for
each m � n; q0m = q�m � qm: For each � =2 f�1; :::; �ng ; let q� = id[0;1) : For each u 2 [0; 1)U ;
and for each � 2 U ; de�ne

(� (u))� = qi
�1(�)

�
ui�1(�)

�
It is easy to check that mapping � has the required properties. �

Lemma 50. If f : [0; 1)n ! Y , is (x0; �o0)-symmetric, then for any x 2 X; any tuples
of orientations �o and �o0 such that x^�o and x^�o0 are analogous to x0^�o0; it must be that
f (�o (u)) = f (�o0 (u)) for all realizations u 2 [0; 1)U .

Proof. By external consistency, there exists a tuple �o00 such that x^�o^�o0 is analogous to
x0^�o0^�o0

0
: By internal consistency, tuple x0^�o0

0
is analogous to x^�o0; and, as a consequence,

to x0^�o0: By symmetry, for each u 2 [0; 1)U ; f (��0 (u)) = f (��00 (u)) : By Lemma 49, there
exists a measurable bijection � : [0; 1)U ! [0; 1)U such that for each u 2 [0; 1)U ;

f (�o (u)) = f
�
��0 (� (u))

�
= f

�
��00 (� (u))

�
= f (��0 (u)) .

�

Take any two analogous tuples �x = (x1; :::; xm) and �x0 = (x1; :::; x0m) : Find tuples �o1; :::; �om
such that for each k � m, tuples x^�o and xk^�ok: Find tuples �o01; :::; �o

0
m such that tuples

x1^�o1^::::^xm^�om and x01^�o
0
1^::::^x

0
m^�o

0
m are analogous. By consistency axioms and the de�-

nition of random variables �f;x;�o (:;u), for each k � m and each u 2 [0; 1)U ;

� (xk;u) = f (�ok (u)) and � (x0k;u) = f (�o0k (u)) :

(We drop the superscript (f; x; �) as it won�t lead to ambiguity.) By Lemma 49, there exists
a �U -preserving measurable bijection � : [0; 1)U ! [0; 1)U such that ��1 is measurable, and
for each k � m and each u 2 [0; 1)U ;

f (�o0k (u)) = f (�ok (� (u))) :

Hence, for each k � m

� (x0k;u) = � (xk; � (u)) :

Because � preserves measure �U; the joint distribution of variables (� (x1; :) ; :::; � (xm; :)) is
equal to the joint distribution of variables (� (x01; :) ; :::; � (x

0
m; :)) : This ends the proof of the

Theorem.
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Appendix H. Proofs of Theorems 1 and 2

In this section, we show that Theorems 1 and 2 are corollaries to Theorem 3.
We assume that the thesis of Theorem 3 holds: Let V = f[x] : x 2 Xg be the set of types

of 1-tuples. Then, there exists a relational system with orientations (X [ O;�), elements
xv; and tuples of orientations �ov, v 2 V such that for each each (X;�)-invariant distribution
! there exist (xv; �ov)-symmetric functions f v : [0; 1)n

v

! Y for v 2 V such that ! is equal
to the joint distribution of variables

�f
v ;xv ;�ov (x;u) ; x 2 v 2 V:

H.1. Proof of Theorem 1. For each x 2 v 2 V , �x a tuple �ox = ((�x1 ; q
x
1 ) ; :::; (�

x
nv ; q

x
nv))

such that x^�ox is analogous to xv^ov. De�ne a function

fx (u1; :::; unv) = f v (qx1 (u1) ; :::; q
x
nv (unv)) :

Then, the number of di¤erent functions fx is bounded by the number of types of 1-tuples
jV j ; the number of di¤erent orientations, and the number of parameters of functions f v:
In particular, there exists �nite m and n such that each invariant distribution ! admits
(m;n)-decomposition.

H.2. Proof of Theorem 2. Suppose that ! admits (xv; �ov)v2V -decomposition with (x
v; �ov)-

symmetric functions fv: Assume that assignments k and n are obtained as in the above proof
of Theorem 1. Then, x 2 v 2 V is not a¤ected by shock � if, for almost all realizations
u 2 [0; 1]U , �fv ;xv ;�ov (x;u (��) ; �) is an almost surely constant function of realization �:
The proof is divided into the following steps. First, because orientations are measure-

preserving bijections, we can assume w.l.o.g. that for each v, tuple �ov = ((�v1 ; p
v
1) ; :::; (�

v
nv ; p

v
nv))

consists of orientations of distinct shocks, �m 6= �m0 for all m 6= m0 (one can always rede�ne
tuple �o and symmetric function fv to avoid repeating orientations of the same shock).
Second, we can assume w.l.o.g. that for each m � nv, for almost all realizations of

u, fv (�o (u)) is not almost surely constant function of u (�vm) (otherwise, one can rede�ne
symmetric fv to avoid spurious parameters).
Third, for each tuple of orientations �o = ((�1; p1) ; :::; (�m; pm)), de�ne the shock support

of �o as supp (�o) = f�1; :::; �mg. Then, for any x 2 v; and any two tuples of orientations �o
and �o0, if x^�o and x^�o0 are analogous to xv^�ov, then supp (�o) = supp (�o0) : (Indeed, if not,
then w.l.o.g. there is � 2 f�1; :::; �nvg n f�01; :::; �0nvg ; and the value of f v (�o (u)) depends
on the realization of u (�) ; but the value of f v (�o0 (u)) doesn�t. Because of the �rst two
steps, f v (�o (u)) 6= f v (�o0 (u)) for some realization of u; which contradicts the fact that f v is
(xv; �ov)-symmetric.) De�ne

U (x) = f�1; :::; �nvg :
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Then, x is a¤ected by shock � if and only if � 2 U (x) : In particular, each x 2 X is a¤ected
by at most �nitely many shocks.
Fourth, it follows from the third step that, for each orientation o of shock � 2 U (x1) nU (x1),

if x1^x2^o is analogous to x01^x
0
2^o

0; and o0 is an orientation of shock �0, then �0 2 U (x01) nU (x02).
Fifth, suppose that x 2 D (�) for some shock �, and D (�) is analogous to D � X

relative to x: We show that there is a shock �0 so that D = D (�0) : Indeed, there are
enumerations d1; d2; :::; of D (�), x1; x2; :::; of XnD (�) ; d01; d02; :::; of D, x01; x02; :::; of XnD;
such that for eachm; tuples x^d1^x1^:::^dm^xm, and x^d01^x

0
1^:::^d

0
m^x

0
m are analogous. Let o

be an orientation of shock �: By external consistency, there exist orientations om = (�m; pm)
such that tuples o^x^d1^x1^:::^dm^xm, and om^x^d01^x

0
1^:::^d

0
m^x

0
m are analogous. By the

third step, �m 2 U (x) : Because U (x) is �nite, and the set of orientations of each shock
is �nite, there are �nitely many orientations of each shock in U (x) : Thus, there exists an
orientation o0 of shock �0 2 U (x) so that for in�nitely many m; tuples o^x^d1^x1^:::^dm^xm,
and om^x^d01^x

0
1^:::^d

0
m^x

0
m are analogous. By internal consistency, it must be that tuples

o^x^d1^x1^:::^dm^xm, and om^x^d
0
1^x

0
1^:::^d

0
m^x

0
m are analogous for all m: By the fourth

step, it must be that �0 2 U (d) for each d 2 D, and �0 =2 U (x0) for each x0 =2 XnD: By the
third step, D (�0) = D:

If there are in�nitely many sets D that are analogous to D (�) relative to x; then there are
in�nitely many shocks �0 such that D (�0) is analogous to D relative to x: Because x 2 D (�0)
for all such shocks, it must be that U (x) is in�nite, which in turn leads to a contradiction
with (3) :

Appendix I. Proof of Lemma 11

For each x; x0 2 X; let x 4 x0 denote the symmetric di¤erence of sets x and x0, i.e.,
x4 x0 = xnx0 [ x0nx: The symmetric di¤erence is re�exive, symmetric, and transitive: for
each x; x0; x00 2 X;

x�x = ?;

x�x0 = x0�x;

(x�x0)�x00 = x�(x0�x00) :

Because of the �rst and the last equality above, x�: : X ! X is a bijective mapping such
that x�(x�x0) = x0: One can check that two tuples �x; �x0 2 Xk are analogous if and only if
there exists x 2 X such that

(x1�x
0
1)�xl = x0l for each l � k: (I.1)
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Suppose that U is a local set: Take any y =2 U and z 2 U and de�ne

U 0 = U [ (y�z)�U = fx; y4 z4 x : x 2 Ug :

Then, jU 0j � j2U j :
We show that U 0 is local. It is enough to check that external consistency holds. Take any

two analogous tuples �x; �x0 of elements of U 0. Take any x 2 U: Then, �x0^ ((x1�x01)�x) is
analogous to �x^x: We show that x0 = (x1�x01)�x 2 U 0:
Notice that x0 = (x1�x

0
1)�x is the unique element so that x1^x is analogous to x

0
1^x

0:

Because U is local, if x1; x01; x 2 U; it must be that x0 2 U: For all x1; x01; x 2 U [ y�z�U; x0
takes one of two forms:

x0 = (w1�w
0
1)�w; or

x0 = (y�z)� ((w1�w
0
1)�w) ;

for some w1; w01; w 2 U: In particular, x0 2 U 0:
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