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ABSTRACT. A joint distribution of an infinite collection of random variables 6 (z),z € X
is exchangeable, if the joint distributions of any two finite tuples of variables of the same
length are equal. A famous result by de Finetti shows that each random variable 6 (z) can
be decomposed as an outcome of two kinds of independent shocks: an aggregate shock that
affects all variables in the same way and a collection of i.i.d. idiosyncratic shocks that affect
each variable separately.

In this paper, we present a generalization of the de Finetti’s Theorem. We assume that all
tuples of variables of a given length are divided into finitely many classes of analogy. A joint
distribution of all random variables is invariant if the distributions of analogous tuples of
variables are equal. Under the finite dimensionality assumption on the system of analogies,
we show that each random variable 6 (x) can be decomposed into finitely many independent
shocks. These may include the aggregate shock that affects all variables, idiosyncratic shocks

that affect each variable separately, and shocks that affect the non-trivial subset of variables.

1. INTRODUCTION

An infinite collection of random variables 6 (x),z € X is exchangeable, if the marginal
distribution over any finite tuple of variables is equal to the marginal distribution over any
other tuple of the same length. For instance, let n and 7, for each x be i.i.d. random variables
uniformly distributed on the interval [0, 1) and take any measurable function f : [0,1)* — Y,
where Y is a Borel space that contains values of variables 6 (x) . Then, the joint distribution
of variables

0 (z) = f(n,n,) for each z € X. (1.1)

is exchangeable. In fact, a famous result by de Finetti shows that each exchangeable collec-
tion has representation (1.1)." The interpretation is that uncertainty about the value of 6 (z)
can be decomposed into two different sources: an aggregate shock n that affects all variables
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IThe original (and arguably, better known) version of de Finetti’s Theorem says that any exchangeable
sequence can be represented as a two-stage lottery: first, a distribution over space AY is drawn, and then
each variable 6 (x) is drawn independently from the distribution obtained in the first step. That version and

representation (1.1) are equivalent.
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0 (') for all 2, including =’ = x, and an idiosyncratic shock n, that uniquely affects variable
0(x).

The de Finetti’s result is one of the most important ideas of the statistical decision the-
ory. Exchangeability captures a simple assumption about the environment: the names of
the variables or the order in which they are observed does not affect their distribution. Be-
cause of that, it has a wide range of applications (testing for product quality, marketting
research, etc ... ) The de Finetti’s Theorem provides an easy-to-interpret representation of
exchangeable distributions. Additionally, decomposition (1.1) has implications for learning,
Bayesian decision theory (see, for example, Kreps (1988)) as well as a wide range of more
immediate applications. Unfortunately, the decomposition is limited to the situations where
exchangeability applies.

The literature (including de Finetti himself*) noticed that exchangeability has natural
extensions. As an example, consider two infinite sequences of tosses with two different coins.
It is reasonable to assume that any two tosses from the first coin have the same distribution
as any other two tosses from the same coin. Because it is also reasonable to suspect that
such two tosses might have a different distribution than a toss with one coin and a toss with
another, the situation cannot be accurately described by exchangeability. In order to deal
with such situations, de Finetti suggested a weaker notion of partial exchangeability and
provided an appropriate representation result (de Finetti (1980)).

In this paper, we show that de Finetti’s type of decomposition holds under a broad class of
assumptions that are weaker than exchangeability. The primitive of the model is the binary
relation of analogy between pairs of equal length tuples of elements of X. We treat two tuples
as analogous if they are conceptually indistinguishable, i.e., there is no reason to think that
the joint distribution of variables over the first tuple is different from the joint distribution
over the variables over the second tuple. In the two-coin example, any two tosses of the
same coin are analogous, but they are not analogous to the two tosses from two different
coins. We say that the distribution w of variables 6 (x) is invariant (with respect to the
analogy relation), if the marginal distributions over two tuples of random variables indexed
with analogous tuples are equal. Consider the following examples:

2'But the case of exchangeability can only be considered as a limiting case: the case in which this
‘analogy’ is, in a certain sense, absolute for all the events under consideration .... To get from the case of
exchangeability to other cases which are more general but still tractable, we must take up the case where we
still encounter ’analogies’ among the events under consideration, but without attaining the limiting case of
exchangeability." (de Finetti (1980))
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e Exchangeability: Let 0 (n) be an outcome of the nth coin toss, and the order of
tosses does not affect the distribution. Here, any two equal-length tuples of distinct
elements are analogous.

e de Finetti’s partial exchangeability: Let 0 (i,n) be an outcome of nth toss with coin
i = 1,2 and the order of tosses of any coin does not affect the joint distribution. Two
tuples are analogous if they have the same length and each toss of coin 7 in the first
tuple corresponds to a toss of the same coin in the second tuple.

e Row-column exchangeability (Aldous (1981)): Suppose that X is an infinite matrix of
customer-good pairs such that any two customers or any two goods are exchangeable.
For each customer ¢ and good p, let 0 (c,p) be the (random) utility of customer ¢
from good p. Two tuples are analogous if and only if one can be obtained from the
other by exchanging the names of customers and/or goods. See Figure 1. Two tuples
(x,z) and (w,u) can be obtained from each other by exchanging the names of goods
p and p'; hence they are analogous. On the other hand, tuples (z, z), and (z,w) are
not analogous.

Products
P’ w u
D x z

c c Customers

Figure 1

e Time invariance: Suppose that X is the set of integers interpreted as different peri-
ods. Two tuples of elements of X are analogous if and only if one can be obtained
from the other by adding an integer.

We assume that the system of analogies satisfies natural consistency requirements. Addi-
tionally, we assume that the complexity of the system is bounded by a certain compactness
assumption. The assumption says that the infinite relational system can be approximated
by finite systems that grow at a sufficiently slow rate. The assumption is satisfied by the first
three examples above, but not by the last example of time invariance. Given the assump-
tions, Theorem 1 shows that each invariant distribution is equal to the joint distribution of
random variables defined as
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0 () = fu@) N1y Mo ) » (1.2)

where

e U is a collection of independent and uniformly distributed random shocks drawn the
interval [0, 1),

® 1ym €U for each z € X, m < my < o0,

o k(z) < ko < oo for each z, and

® i, fro : [0,1] — Y are finitely many measurable functions that may depend on
the distribution w.

In particular, each invariant distribution admits a de Finetti type of decomposition. Ad-
ditionally, Theorem 3 shows that if functions f“ are to satisfy some additional symmetry
restrictions, then the existence of representation (1.2) is necessary and sufficient for invari-
ance.

We discuss some implications of the main result. First, decomposition (1.2) reduces po-
tentially complicated uncertainty about variables 6 (z) to much simpler uncertainty about
independent shocks 7. It provides information about the correlations between individual
variables 6 (z) and 6 (z’) . In particular, the two random variables # (x) and 0 (x') are corre-
lated only insofar they are affected by the same shocks.

Second, we say that the set of elements affected by the same shock is a domain of the
shock. It turns out that not all subsets of X can be domains; a domain must satisfy a certain
stability property that can be stated purely in terms of the analogy relation. Because in
typical applications that property is satisfied by sets that share common (example-specific)
features, we refer to such sets as concepts. The number and the type of concepts depend
on a particular example. In the exchangeability case, there are two types of concepts: the
entire set X that forms a domain of the aggregate shock (i.e., the shock that determines
the idiosyncratic distributions) and single-element concepts {z} that form domains of the
idiosyncratic shocks. In the case of row-column exchangeability, there are two additional
types of concepts: the set of all observations associated with the same customer and the set
of observations associated with the same good.

There is a natural interpretation of shock 7 as a variable that aggregates the (subjective or
objective) properties of the domain. Then, representation (1.2) decomposes the uncertainty
over 6 (x) into the (independent) uncertainty about the properties of concepts that contain
x.

Finally, decomposition (1.2) has implications for learning theory. Recall first that de
Finetti’s theorem is widely interpreted as the simplest model of induction. Suppose that a
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statistician uses past data 6 (2') , 2’ # x to predict the value of yet unobserved variable 6 (x) .
Because of representation (1.1), one can divide the prediction into two stages:

e induction, in which the past data are used to infer the value of the aggregate shock.
Its value can be inferred from the past observations because it has the same impact
on all past observations,

e deduction, in which the value (or the distribution) of variable 0 (x) is predicted as a
function of the aggregate shock.

In the general case of representation (1.2), the induction stage may involve inference of
additional shocks that have smaller domains than the aggregate one. Moreover, prior to the
induction stage, one can distinguish

e conceptualization, in which element 0 (x) is identified as a member of larger sets of

variables.

There is a substantial literature on various extensions of exchangeability (for overviews,
see Diaconis (1988), Kallenberg (2005)). Row-column exchangeability and related cases are
discussed in Aldous (1981). Hoover (1982) and Kallenberg (2005) contain further extensions.
Other notions of exchangeability that are not covered by the present model include the
extension to Markov chains presented in Diaconis and Freedman (1980).

Al-Najjar (1995) studies general (not necessarily invariant) distributions w of random vari-
ables 0 (z), x € X. Space X is assumed to be a measurable continuum space with non-atomic
measure 1 € AX. He shows that, up to zero u-probability events, distribution w decomposes
into aggregate and idiosyncratic shocks. In this paper, X is discrete, there is no measure
i, and we find many different types of shocks. Jackson, Kalai, and Smorodinsky (1999)
assume that X = N, and that w satisfies reverse mixing condition. They show that any
such distribution can be decomposed into long-run (learnable) and short-run (unpredictable
in the long-run) effects.

Section 2 defines the relation of analogy and states main assumptions. Section 3 shows
that any invariant distribution in relational systems that satisfy appropriate compactness
assumption has decomposition (1.2). Section 4 defines concepts and shows that decomposi-
tion (1.2) can be chosen so that all domains of shocks are concepts. Section 5 discusses some
examples. The necessary and sufficient conditions for invariance are presented in section 6.
Section 7 discusses the main ideas behind the proofs. Section 8 uses an example to show
that without the compactness assumption the results of this paper may fail. The proofs can
be found in the appendix.
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2. RELATIONAL SYSTEMS

Let X be a countably infinite with typical elements x, 2’ € X. A typical k-tuple of the
elements of X is denoted by Z = (1, ..., 2;) € X*. Let Z°7' denote a concatenation of tuples
Z and 7'. For any set S C X, any tuple z = (1, ..., zx) , we write £ C S if {xy,...,2,} C S.

An enumeration of set S C X is a (possibly infinite) tuple § = (s1, s2,...) that contains
exactly each element of set S once. The enumeration is infinite, if set S is infinite. Whenever
we want to fix the enumeration of set S, but the choice of enumeration is not important, we
write S.

Let ~ be an equivalence relation on | J X* such that, for any two tuples z,7’ € |J X*, if
k k

7 ~ 7', then Z, 7' € X* for some k. Relation ~ is called an analogy relation, if it is reflexive,
i.e., T ~ ¥ for each tuple Z, and satisfies the following axioms: for any k, any two tuples
(1, ey Tg) ~ (2], ., 2h)
e invariance to permutations: (:L'ﬂ(l), . xw(k)) ~ (x;(l), . x;(k)> for any permutation
m: {1, k} = {1,....k},
e internal consistency: (T1,...,Tp_1) ~ (x’l, -'-’352_1) ,
e external consistency: for any z, there exists 2’ such that (z1, ..., xx, ) ~ (2, ..., 2}, 2)

For any two k-tuples T ~ Z’, we say that tuples z and z’ are analogous. An equivalence
class [Z] € X% of tuple Z € X* is called a type of tuple Z. Set X together with analogy
relation ~ is called a relational system (X, ~).

The analogy relation encodes prior information about the elements of X. Two analogous
tuples are treated as indistinguishable. If two tuples of elements are indistinguishable, then
neither the same reordering nor the removal of some elements should make the tuples dis-
tinguishable. Similarly, if two tuples are indistinguishable, then one should not be able to
tell them apart by looking at their relations to elements outside the tuples.

A relational system has finitely many types of 1-tuples, if |{[z] : © € X }| < 0o. A relational
system is transitive, if there is only one type of 1-tuples, i.e., X = [z] for each x.

For each U C X, let ~y be the restriction of the analogy relation ~ to the tuples of the
elements of U. A finite set U C X is local if ~y is an analogy relation. In particular, the
restriction ~;; must satisfy external consistency: for all tuples z,z’ € U if tuples 7 and &’
are analogous (as elements of X), then for each = € U, there exists 2’ € U such that tuples
x"Z and x'"T’ are analogous.

A relational system (X, ~) is 1-compact, if there exists finite Uy C X such that for each
local U D U,, for each x € X, there exists local set U’ O U, x such that

log |U'] <4 +log|U]. (2.1)

The base of the logarithm is always equal to 2.
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We interpret local sets as finite approximations of the infinite relational system. The com-
pactness assumption says that the relational system can be approximated by finite relational
systems and the cardinality of approximations does not grow too quickly. The condition
puts a bound on the complexity of relations between the elements of X : the more complex
are relations between x and elements of a local set U, the less likely that there is a small

set U’ O U,z that satisfies external consistency. All but one example of relational systems
1

3 .
50" Section &

(including the one discussed immediately below) are 1)-compact for each ¢ <

presents an example of a 1-compact relational system.

2.1. Example: Multiple customers and goods. We use the row-column exchangeability
example mentioned in the introduction to illustrate the definitions and the results of the
paper. Consider a statistician who studies purchases in a population of customers. Let
X = (C x P, where C is an infinite set of customers, and P is an infinite set of goods. Let
0 (c,p) be the utility of customer ¢ from purchasing good p. Suppose that the statistician
has no prior information that leads to meaningful differences between customers or goods.
For instance, the statistician identifies customers by their names, but there are no reasons
to believe that the knowledge of names does not help in predicting purchases.
Define two equivalence relations on set X : for each z = (¢, p), and 2’ = (¢, p’),

xRz’ if and only if ¢ = ¢,

xRpx’ if and only if p = p/.

For each two tuples Z and Z’ of the same length k, say that the tuples are analogous, T ~ 7’
if and only if for each I,m < k,

1 Rox,y, if and only if ) Rox!),, and

1 Rpx,, if and only if xjRpz! .

It is easy to check that so defined relation ~ is reflexive and it satisfies the other properties
of the analogy relation.

We show that the relational system (X, ~) is %—Compact. It is easy to notice that all
finite sets Cy C C, and Py C P, set Cy X Fy is local. In fact, there is a finite set Uy such that
each local U D Uy is equal to Cy x Py for some finite Cy and FPy. For each x = (¢,p), and

each Cy, Py, let
Cy=CoU{c} and B = PByU{c}.

3n fact, it follows from the proof of our main result that if the relational system has finitely many types
of 1-tuples and it is %—compaet, then it is iy-compact for any ¥ > 0.
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Then, for sufficiently large Cy and F,
Cx Byl _ (Gl + DRI+ _ s
|Co x Fo| — |Col | Pol -

3. INVARIANT DISTRIBUTIONS

Let w € A(Y)™ denote the joint distribution of variables {f (7)},cx - Distribution w is
(X, ~)-invariant if for any two analogous tuples 7 ~ 7’ € X*  any Borel sets Uy, ..., U, C Y,

Invariant distributions can be treated as functions of the tuples of the elements of X into
the space of the distributions of the tuples of the elements of Y. Then, loosely speaking,
invariant distributions are measurable with respect to partitions of the space of the tuples
induced by the classes of analogy.

Let U = {n;} be an infinite collection of i.i.d. random variables, all uniformly distributed
on interval [0,1]. Take any function k& : X — {1,...,ko} and n : X — U™ for some finite
ko, mg < oo. We refer to k and n as a pair of assignments. Distribution w admits (k,n)-
decomposition, if there are measurable functions fi’, ..., fz : [0,1]™ — Y such that w is
equal to the joint distributions of variables

0 () == fimy (N1 ()50, (7)), @ € X, (3.1)

In other words, each variable 6 (z) can be decomposed into finitely many independent shocks,
and the decomposition uses one of finitely many different functions.

If X is finite, then any (not necessarily invariant) distribution has a finite decomposition.
Similarly, for any distribution, there exists a decomposition with one random shock, but
infinitely many aggregating functions.® The main result of this paper is that under the ap-

propriate compactness assumption, any invariant distribution admits a finite decomposition.

Theorem 1. Suppose that X is a countably infinite, relational system (X, ~) finitely many
types of 1-tuples and it is %—compact. Then, there is a pair of assignments k and n, so that
each (X, ~)-invariant distribution w admits (k, n)-decomposition.

Theorem 1 presents the conditions necessary for invariance on relational systems. Each
invariant distribution has a finite decomposition, i.e., (k,n)-decomposition for some assign-

ments k, and n.

4Standard results show that for each Borel space Y (a category that includes Polish spaces), each distri-
bution w € AY, there exists a measurable function ¢g* : [0,1] — Y such that w is equal to the distribution of
g* (1) , where 7 is uniformly distributed on the interval [0,1]. For example, if Y = YX, then distribution
w has a decomposition with infinitely many aggregating functions f& (1) := (9 (1)), -
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If there are infinitely many types of 1-tuples, then there are distributions without finite
decomposition and the thesis of the Theorem does not hold.”

Some restrictions on the complexity of the relational system are necessary for finite de-
compositions. It is not difficult to find examples that are not compact and that do not satisfy
the thesis of the Theorem (for instance, the time invariance case from the introduction is one
of them). A more narrow question is whether constant 5 in the statement of the Theorem
can be increased. Although we suspect that % is not the best possible, we show that the
constant cannot be chosen too high. Specifically, the Theorem fails, i.e., there are invariant
distributions without finite decompositions, in the 1-compact example from Section 8.

The representation 3.1 is not unique. To see why, consider any measure preserving bijec-
tion o : [0,1] — [0,1]. Then, the joint distribution of variables (3.1) is equal to the joint
distribution of variables

0" (x) = fiiw (00m1 () ;02 (), o0y Ny (7)), @ € X.

Finally, the existence of finite decomposition is not sufficient for the distribution w to be
invariant. Theorem 3 below presents the necessary and sufficient conditions for invariance.

Theorem 1 is a corollary to the more comprehensive Theorem 3 below.

3.1. Example: Multiple customers and goods. In our example, distribution w is in-
variant if and only if it remains unchanged under (separate) permutations of customers
and products. Aldous (1981) calls such distributions row-column exchangeable. He shows
that, for any row-column exchangeable distribution w, there exists a measurable function
f:10,1)* — {0,1}, such that w is equal to the joint distribution of variables

0(c,p) = f (nx,nc,np,n(w)) for each (c,p) € X. (3.2)

Each variable 6 (¢, p) is a composition of four types of shocks: 7y is the aggregate shock with
the domain equal to the entire space X, 7. is the customer-specific shock with the domain
equal to set S. = {(c,p') : p' € P}, 1, is the good-specific shock with the domain equal to
Sy, = {(c,p): ¢ € C}, and 1.y is the idiosyncratic shock with the single-element domain
(¢,p). In particular, decomposition (3.2) is a special case of Theorem 1.

4. DOMAINS OF SHOCKS

One of the implications of the decomposition (3.1) is that there are sets of variables that

possibly contain more than one element, and that are affected by the same shocks. We call

Suppose that f1, fo... : [0,1] — Y is a sequence of pairwise different measurable functions. Let x1, z3, ...
be a sequence of elements such that no two elements have the same type. For each x that is analogous to
Ty, define 0 () := f, (nz,)). The joint distribution of # (z) is invariant, but the representation requires

infinitely many aggregating functions.
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such sets the domains of the shock. Formally, say that x € X is not affected by shock n € U, if
for almost all realizations of shocks 1" € U\ {n}, fi,) (1 (), ..., nm, (x)) is an almost surely
constant function of the realization of shock 7. In particular, if n ¢ {n,, (x),m < mg}, then
x is not affected by 7. Define the domain of 1, D (n) as the set of elements of X that are
affected by 7.

Next, we characterize a certain stability of the domain. For any x € X, say that two
(possibly infinite) sets S, S” are analogous relative to x, if there exist enumerations sy, so, ...
and xy, o, ... of sets, respectively, S and X\S, and enumerations s/, s, ..., and 2,5, ...
of sets, respectively, S’ and X\S’ such that for any m, tuples (z,s1,Z1..., Sm, Tm,) and
(x, s}, 2%, ..., s, 2, ) are analogous. Informally, two sets are analogous relative to x if they
have similar positions relative to x.

Say that set S C X is the concept if the number of sets S’ that are analogous to S relative
to z is finite and uniformly bounded across all = € S,

ig = sug [{S" : S is analogous relative to x}| < .
Te
We refer to ig as the index of concept S.

For example, sets X and {z} for each z € X are concepts with index 1 in any relational
system. We refer to such sets as trivial concepts. Examples of non-trivial concepts are
presented below. In a typical application, concepts consist of elements that "share certain
feature." The exact meaning of "sharing a feature" depends on the particular application.
In contrast, our definition of a concept applies to all relational systems.

Theorem 2. Tuke the same assumptions as in Theorem 1. Then, the pair of assignments
k and n can be chosen so that for each shockn, D (n) is a concept.

1_
20

finitely many 1-types belongs to finitely many concepts (see also Section 7.2.5). Thus, there

In the appendix, we show that each element x of a —--compact relational system with
are significantly fewer concepts than all sets. Moreover, the enumeration of all concepts is
typically easy. This fact helps the application of Theorem 1. In order to find a decomposition
of an invariant distribution, one has to consider all possible domains of the shocks. This
task is easier if the domains must belong to a (relatively) small class of concepts.

A simple heuristics explains why the domains should be concepts. Suppose that the
domain of shock 7 is not a concept and there exists x € D (1) such that there are infinitely
many sets D that are analogous to D (n) relative to x. For each such D, find a shock 7,
such that D (') = D. By invariance, 6 (x) must be affected by each shock np in exactly the
same way as by the shock 7. If there are infinitely many sets D that are analogous to D ()
relative to z, then 6 (z) is affected in ezactly the same way by infinitely many independent
shocks. But this is impossible, unless the effect of  on 0 (z) is equal to 0 and x ¢ D (7).
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4.1. Example: Multiple customers and goods. There are only four types of concepts:
the trivial concepts X and {z} for x € X, the concept of customer S, for some ¢, and the
concept of good S, for some p. (Sets S. and S, are defined in Section 3.1.) The formal
argument is presented in Appendix A. Here, we discuss two examples. See Figure 2. Set
S, consists of all observations associated with customer c. It is easy to check that any set
that is analogous to S, relative to any x € S. must be equal to S.. On the other hand, set
S = S.US,. consists of all observations associated with customers ¢ or ¢’ # c. Relative to z,
S is analogous to any other set S” = S. U S, that consists of observations associated with
customers ¢ or ¢’ # c. Because there are infinitely many such sets, S cannot be a concept.

S1 ’ S Sy
2 5
el T el el el 17]

5. EXAMPLES

We discuss examples of relational systems. As in the main example, it is often easier to
describe the analogies using other, more primitive relations. A k-ary relation R*) on X is
defined as a subset R*) C X*. Let R = {Rfk‘}} be a collection of relations on X. For
any two tuples T = (z1,...,2x),7 = (2, ...,2}) ,Zeslay that tuples z and 7’ are (R)-inner

analogous, if and only if for each i € I, I3, ..., [y, <k,

(a:laclk> € R, iff (xlxlk> € R:.

The inner analogy satisfies invariance to permutations and internal consistency. Additionally,
if the inner analogy satisfies external consistency, then the inner analogy is an analogy
relation; we say that the analogy relation is induced by R and write (X, R) for the induced
relational system.

External consistency is satisfied in all the examples below.

5.1. Trivial system. In this example, we formally describe the relational system in which
invariance is equivalent to de Finetti’s exchangeability. Let ’ ='C R? be the binary relation
of equality: for any z,2’ € X, "2’ €’=" iff z = 2. In relational system (X, ='), any two
tuples of an equal number of distinct elements are analogous. In particular, invariance with
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respect to analogies induced by ' =’ is equivalent to exchangeability. Additionally, it is easy
1
20
The trivial concepts, the entire space X and one-element sets {z} for each x € X, are

to check that any finite subset of X is local and the system is 5--compact.
the only concepts of the system (X, ='). A version of de Finetti’s Theorem says that any
exchangeable distribution w is equal to the joint distribution of (1.1) (see Kallenberg (2005)).

5.2. Multiple goods with multiple disconnected customers. Next, we discuss two
versions of the main example from Section 2.1. First, we show that a removal of some
relations from the relational system may reduce the collection of concepts. Let (X, ~) be
the relational system from Section 2.1. Let relation Rp be defined as above and define a new
analogy relation ~* be induced by relation Rp and the equality relation.

The relational system (X, ~*) describes analogies in a situation in which the data collected
do not ensure that the population of customers of one product is in any way related to the
population of the customers of the other product. The customers of two different products
may be coded with the same label, but there is no reason to believe that observations (c, p)
and (c,p’) are associated with the same customer. For example, for any customers ¢, ¢ and
any products p, p/,

((e;p), (e,p) ~* ((e,p), (¢, ) -

To see the difference between analogy relations ~* and ~, notice that

((e;p), (e, p)) = ((e;p), (', )

There is only one type of non-trivial concept in the relational system (X, ~*): concept of
product S, = {(¢,p) : ¢ € C}. (This claim and other similar claims in this Section can be
proven with similar methods as those applied in Appendix A. We omit the details.) For each
invariant w, there is a measurable function f : [0, 1]3 — R such that w is equal to the joint
distribution of

0(c,p)=f (nx,np,n(cvp)) , for each (¢,p) € X, (5.1)
where 1y is the aggregate shock, 7, is the shock associated with concept S,, and 7.y is
the idiosyncratic shock. Notice that the only difference between (5.1) and (3.2) is that the
former does not include the customer-specific shock.

5.3. Customers, goods, incomes, and prices. Here, we describe a non-transitive version
of the example from Section 2.1. Suppose that the statistician studies the distribution of
purchases of infinitely many goods together with a distribution of customers’ income and
the prices of goods. Let X = C' x PUC U P and let 0 (c,p) € {0,1} be the indicator of a
purchase, 6 (¢) € R be the income of customer ¢, and 6 (p) be the price of good p.

Define relations on X : for each xz, 2’ € X
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e unary RY: Rlx ifz € C,
e unary R%: Rz if z € P,
e binary Rc: xRex’ if and only if x and 2’ refer to the same customer (for example,
r = cand 2’ = (¢, p) for some c € C' and p € P),
e binary Rp: xRpx’ if and only if x and 2’ refer to the same good (for example, z = p
and 2’ = (¢, p) for some ¢ € C' and p € P).

Let Reprp = {RY, Ro, R%, Rp}. The relational system induced by R prp is not transitive: the
unary relations divide space X into three types of 1-tuples: purchase decisions C'x P, incomes

of customers C, and prices of goods P.
1 -

Similarly as in Section 2.1, we show that the relational system (X, Rcprp) is 55-compact.

We enumerate all concepts. For each customer ¢ and product p, define

Se={c} x P, S, ={c}uUS?,
S9=C x {p},S.={ptu s

For example, S, = {c}US? is the set of all observations associated with customer ¢ (including
¢’s income). All concepts are either trivial or belong to one of the above type.

Theorems 1 and 2 show that each invariant distribution has a decomposition into shocks
with concept domains. In fact, for each invariant w, there are measurable functions f :
0,1)" — {0,1}, and fe, fp : [0,1)> — R such that w is equal to the joint distribution of
variables

0(c) = fo (nX, ns(c)) for each ¢ € C,
0 (p) := fr (nx,nsw)) for each p € P,
0 (Cap> = fC><P (77X7 7770777p777(c,p)) for each ¢ x pE C x Pa

where nx is the aggregate shock, 7, is the customer-specific shock, 7, is the product-specific
shock, and 7)) is the idiosyncratic shock. Note that even if the variables 6 (c, p) , 0 (c), and
0 (p) are generated through different aggregating functions foxp, fo, and fp, they can be
correlated with each other through common shocks 7nx, ng(), and ns).

5.4. Bundles of goods. The last two examples introduce two ideas that appear in the
necessary and sufficient conditions for invariance: symmetry of the aggregating function
f () and orientations of shocks. Additionally, the example described in this section has a
concept with an index that is higher than 1.

Suppose that a company studies the demand for bundles of goods. Let P be a countable
set of goods. Define X = {x C P: || = k} as the set of k-element subsets of P. For each



14 MARCIN PESKI
[ < k, define binary relations R; : for each x, 2’ € X,

cRP2 iff |z nal| =1

In other words, two elements of X are in relation R; to each other, if their intersection has
exactly [ elements.

For simplicity, we focus on the case of k& = 2. Consider the relational system gener-
ated by relations R; and Ry. There is only one type of non-trivial concept: Let S (p) =
{z € X : p € P} be the set of all observations associated with good p. One checks that set
S (p2) is the only set apart from S (p;) that is analogous to S (p1) relative to bundle {py, pa} .
In particular, S (p) is a concept with index 2. Any invariant w is equal to the joint distribution
of

9{p17p2} = f (UX>77p1777p2777{p1,p2}) > (52)

where f : [0, 1)4 — Y is measurable, 7x is the aggregate shock, 7, is the product-specific
shock, and 7y, .1 is the idiosyncratic shock.

In order for the joint distribution of (5.2) to be invariant, it is necessary and sufficient to
require that the value of the aggregating function f does not change with a permutation of
the second and third coordinates: for all realizations 1x, 7., pys Np1pe) € [0,1),

f (nX>77p1>77p2777(p1,p2)) = f (annpzvnpun(prz)) . (53)

Intuitively, the label of each bundle {p;,p2} does not depend on the ordering of goods p;
and ps, and the realization of variable 6 {p;, p2} should be the same if p; were switched with

p2.

5.5. Multiple customers and two goods. Finally, consider yet another version of the
example from Section 3.1, but with two goods only, P = {p1, pa}. Suppose that the statis-
tician does not have any prior information that distinguishes between the two goods. The
relational system is induced by the same (appropriately restricted) relations Rc and Rp.
Then, for each invariant w, there exists measurable functions fi, f5 : [0, 1)2 — {0, 1} such
that w is equal to the joint distribution of variables

0 (Ca pz) = fz (an 770) ) (54)

where 7). is the customer-specific shock.
Additionally, distribution (5.4) is invariant if that for all nx and 7.,

fo(nxsme) = i(l—nx,1—n). (5.5)

(The formal derivation can be found in Section 7.1.7.) We say that the shocks come in
one of two orientations: 7 and 1 — 7. Each orientation is associated with one of the goods.
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Section 6 formally defines the orientations and uses them to state the sufficient and necessary

conditions for invariance.

6. SYSTEM OF ORIENTATIONS

In this section, we derive the necessary and sufficient conditions for invariance. We use two
ideas that were introduced in the last two examples of Section 5. First, we add a possibility
that the shocks come with orientations. Second, we describe a notion of symmetry for
aggregating functions.

6.1. Orientations. Measurable mapping ¢ : [0,1) — [0, 1) is an orientation, if it preserves
Lebesgue measure A, i.e., for each measurable £ C [0,1), A(¢(E)) = ¢(E). A finite set of
orientations P is regular if id € P, for each ¢q,¢' € P, go ¢ € P, and there exists an interval
Iy € [0,1) such that {q(Iy),q € P} is a partition of [0, 1) into | P| subintervals.

Example 1. For each n € [0,1), letid (n) = n, and qo (n) =1 —n. Then id = ¢3 and qo are
orientations, and sets {id} and {id, qo} (but not {qo}) are reqular sets of orientations with,
respectively, intervals [0,1) and [0, %)

Let (X, ~) be a relational system. Let U be a collection of i.i.d. random shocks uniformly
distributed on the interval [0,1). A realization of all shocks in I is denoted as u € [0,1)%.
Let AV be the joint distribution of shocks u, i.e., A is the product of Lebesgue distributions
on the interval [0, 1) . For each shock n € U, let @), be a finite and regular set of orientations.

Let O = | {n} x @,. Each element o = (1, ¢) € O is called an orientation of shock 7.
neu

A system with orientations of (X, ~) is a relational system (X U O, ~) such that
e ~ is the extension of the original relation of analogy from set X to X U O, and
e for each tuple of orientations 6 = ((1,q1), ..., (7, ¢n)) of shock n, if o is analogous
to tuple 0’ then there are shocks 1’ and ¢ € @, such that @, = @,y and ¢’ =
(' quoq), ... (1, qm 0 q)) .

The first part of the definition ensures that the original analogy relation and the analogy
relation in the system with orientations agree on X. The second part ensures that (a) tuples
of orientations of the same shock 7 are analogous only to tuples of orientations of the same
shock 7" (possibly, ' # 1), and that (b) the regular structure of orientations is preserved by
analogies.

6.2. Symmetric functions. Orientations of shocks affect their values in the following way.
Take any realization of shocks u € |0, 1)u . For each tuple of orientations

0= (M, 1) - (1hns 4n)) »
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define the n-tuple

0(u) == (a1 (u(m)), - qn (u(mm))) € [0,1)".

In other words, tuple 6 (u) consists of the realization of shocks 7y, ..., 7, "interpreted" ac-
cording to orientations ¢, ..., ¢y.

Fix x € X, n € N, and a tuple of orientations o € O". Measurable function f : [0,1)" — Y
is (x,0)-symmetric, if for each u € [0,1) and for all tuples of orientations o such that z"o
and z"0' are analogous,

fo(u) = f(0 (u)).
To see what symmetry means, notice that tuples 0 and ¢’ may differ in terms of the order
and the orientations of shocks. Then, function f (.) is symmetric if it does not change after

certain reorderings of its parameters (as in the example from Section 5.4), and with respect

to some changes in the orientations (as in the example from Section 5.5).

6.3. Decompositions. Orientations and symmetric functions can be used to construct in-
variant distributions. For each ' that is analogous to z, find a tuple of orientations 6 such
that 2/°6% is analogous to z°6 (such tuple exists because of the consistency axioms). For
each realization of shocks u € [0,1)”, define

0770 (z;u) == f (61/ (u)) : (6.1)

It can be shown (Lemma 50 in Appendix G) that symmetry implies that (6.1) does not
depend on the choice of orienting tuple 6° as long as /"” is analogous to 2" 6. Notice that
6722 (z;u) is a function of the random realization of the shocks, and hence, it is a random
variable.

We describe the construction in two cases separately. First, we assume that the relational
system (X, ~) is transitive. Take any z* € X and the tuple of orientations 0* C O. Distribu-
tion w admits (x*,0*)-decomposition if there exists (x,0)-symmetric function f : [0,1)" — Y
such that w is equal to the joint distribution of variables

0770 (z;u) , x € X.

In the general case, assume that the relational system has finitely many 1-tuples, and let
V = {[z] : € X}. Suppose that the tuple (z",0") consists of elements z¥ € v and tuples

of orientations 6" for each type v € V. Distribution w admits (z",0"), ., -decomposition, if

veV
there exist (2%, 0")-symmetric functions f*: [0,1)" — Y for v € V such that w is equal to

the joint distribution of variables

07" (msu) ,x € v EV.
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6.4. Sufficient and necessary conditions for invariance. The next result describes the

necessary and sufficient conditions for invariance.

Theorem 3. Suppose that the relational system (X, ~) has finitely many types of 1-tuples,
V ={[z] :x € X} and |V| < oco. For each system with orientations (X U O, ~), elements

v

x¥, and tuples of orientations o', v € V, if distribution w admits (x,6")-decomposition, then

it 1s (X, ~)-invariant.
Additionally, if (X, ~) is %-compact, then there exists a relational system with orientations
(X UO,~), elements x¥, and tuples of orientations 0", v € V' such that each (X, ~)-invariant

distribution admits (x",0")-decomposition.

The first part of the Theorem is relatively straightforward, and its (elementary) proof can
be found in appendix G. We describe the ideas lying behind the second part in Section 7
below. The formal proof can be found in Section 7.3.3.

Next, we discuss how the systems of orientations and symmetric functions fit into examples
from Sections 5.4 and 5.5.

6.5. Example: Bundles of goods. Consider Example 5.4. Assume that U/ consists of
shocks nx,n,, and 7, for p € P and z € X. There is only one orientation of each shock
nel, Oy ={oy} ={(n,id)}.

Let (X U O, ~) be the relational system induced by a unary relation Ry and binary relation
Rp defined so that for each x, 2’

e Rpx if and only if = is an orientation, and

e rRpx’if and only if x and z’ are associated with the same good (we say that z € XUQO
is associated with good p € P if and only if either x = (p, p’) for some p’ € P, or x is
an orientation of shock n = 7, and or n = 7,y for some p’ # p. for each x, 2’ € XUQO).

Take any x = (p1,p2) and let 0 = (oX, onpl,onm,onplm) . If tuple 0 is analogous to tuple
o' relative to x, then either 0 = ¢, or 0 = (OX, Oty Oy, O’?pmz) . Therefore, a measurable
f:]0,1)* = Y is (z,0)-symmetric if and only if condition (5.3) holds for all realizations
11X 5 Mpy s Tpa > Mp,p2) € [0> 1) .

6.6. Example: Multiple customers and two goods. Consider Example 5.5. Let U = {nx }U
{ne,c € C}. Let {id, qo} be the set of orientations from Example 1. Let O = U x {id, ¢} . In
other words, each shock has two orientations. We associate orientation id with good p; and
orientation gy with good py. The association between orientations and goods is arbitrary,
and the opposite association would not change the analysis.

Define unary Rp and binary Rp, R¢ relations on set X U O : for each x, 2/,

e Rpx if and only if = is an orientation,
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e xRpx’ if and only if x and 2 are associated with the same good,
e rtRox’ if and only if x, 2" € X and x and 2’ are associated with the same customer,

Then, the relational system induced by the three relations is a system of orientations.

Fix z = (¢,p), and a tuple of orientations 0 = ((nx,1id), (7.,1d)) . Tuple x" ¢’ is analogous
to tuple x°0 if and only if 6 = @. Thus, any measurable function f : [0, 1)2 — Y is
(x,0)-symmetric, and for each ' = (¢, p'), each tuple 2'"¢' that is analogous to x" o, each
realization of shocks u,

Lo fu(nx),umn)), if p = p,
flo (“”‘{f<1—u<nx>,1—u<nc>>, it £ p.

7. IDEAS BEHIND THE PROOF OF THEOREM 3

Here, we describe the main ideas behind the proof of Theorem 3. This section should be
treated as a guide toward reading Appendices B-G.

The proof has two essentially different parts: probabilistic and algebraic. In the first part
of the section, we describe the main tools that are important for the probabilistic part of the
argument. The tools are illustrated in the examples discussed earlier in this paper. Section
7.2 discusses the algebraic part: The goal is to find a convenient representation of 2—10—compact
relational systems. Section 7.3 discusses how the various parts come together in the proof

of the general case.
7.1. Main tools.

7.1.1. Borel decomposition. We describe a technique to replace an arbitrary probability
measure by the uniform distribution on the interval [0,1). Below, we always assume that
Mo,1,Ma € U for a € A are distinct, independent, uniformly distributed on the interval [0, 1)
random shocks. Let Y and Y, be standard Borel spaces. The results mentioned here are
standard, and their proofs can be found, for example, in Kallenberg (2005).

The key observation is that if w € AY is a distribution of Y-valued variable 6, then 0
can be represented as a transform of a random shock 7: there exists a measurable function
f:10,1) — R such that w is equal to the distribution of f (7).

The key observation has multiple extensions. For example, a conditional version of the
above result holds. Suppose that w € A (Yy X Y) is a joint distribution of a pair of variables
(Ao, 0) . Then, there is a measurable function f : Yy x [0,1) — Y such that the w-conditional
distribution of 6 given 6 is equal to f (6y, 7).

The conditional version can be further compounded with the Borel decomposition result
for variable 6y leading to a measurable fy : [0,1) — Yj such that w is equal to the joint

distribution of (fo (10), f (fo (m0),7)) -
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Finally, the Borel decomposition adapts in a natural way when some of the variables are
independent or, more generally, conditionally independent. Suppose that w € A (YO X YA)
is a distribution over variables 6y and 6 (a),a € A such that variables 6 (a) is conditionally
independent from variables 0 (a') , @’ # a given 6y. Additionally, assume that the conditional
distributions of # and 6’ are equal. Then, there are measurable functions fy : [0,1) — Yj
and f:[0,1)> = Y such that w is equal to the joint distribution of fy (1) and f (1o, 7,) for
a € A.

Appendix F.1 presents specific versions of the Borel decomposition results used in this

paper.

7.1.2. Conditional independence. Suppose that (X, ~) is a relational system. Let A, B,C C
X be subsets of X such that A and C are disjoint. If A is finite, say that sets A conditionally
independent from C given B, if for each enumeration a of set A, for each finite tuple ¢ C BUC,
there exists tuple b C B such that @°¢ and @b analogous. If A is infinite, then say that
A is conditionally independent from C' given B if each finite subset of A is conditionally
independent from C' given B.

The definition is motivated by the following observation: Under invariant distributions, the
conditional independence of sets implies the conditional independence of random variables.

Lemma 1. Let A, B,C C X be disjoint sets such that A is conditionally independent
from C' given B. For any invariant distribution w, the joint realization of random variables
{0 (x),x € A} is conditionally independent from {0 (z),x € C} given {0 (z),x € B} :

w@(z),r€Alf(z),r € BUC)=w(0(x),x € Al (x),x € B).

Proof. Suppose that A is finite and let @ be an enumeration of A. For any function ¢ : Y4 —
R, for any set U C B U C, define

Vi (q) = B (g — B, (¢ (z) ,x € U))*.

Take any U C W C BUC. By Jensen’s inequality, Viy (¢) > Viy (¢). Moreover, E,, (¢q|0 () ,x € U) =
E,(q|0 (z),x € W) if and only if Viy (¢) = Vix (q) for each ¢ : Y4 — R.
Suppose that for two sets ¢’ and B’, and their enumerations ¢ and b, tuples @"¢ and @"b
are analogous. Then, the invariance of w implies that Vg (¢) = Vir (q) .
We show that Vpuc (¢) = Vi (q) for each ¢ : Y4 — R. On the contrary, suppose that
Vieue (q) < Vi (q) for some q. There exists a finite ¢’ C B U C' such that Vi < Vi (q) . Take
any enumeration ¢ of C' and let B C B be a subset and b its enumeration such that a"é
and @"b are analogous. By invariance,

Ve (q) > Ve (@) = Ve (¢) > Vs (q).
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The contradiction establishes the result for finite A. The infinite case follows from the
standard probability arguments. O

7.1.3. Isomorphic subsets. It is sometimes convenient to describe the decomposition of un-
certainty on a properly chosen subset Xy C X instead on the original space X. Set X should
be sufficiently large so that the decomposition on X implies the decomposition on X.

Say that mapping a : X — X preserves analogies, if each tuple = (x4, ..., x1) is analogous
to tuple a (z) = (a(x1) , ..., (x,,)) . Say that X, is isomorphic to X if there exists a bijection
a : X — X, such that o and a~! preserve analogies. Using bijection «, we can go back
and forth between sets Xy and X. On the one hand, an invariant distribution on X can be
mapped to an invariant distribution on Xy. On the other, if we can find the decomposition

on X, then the inverse o~!

maps the decomposition back into the original space X.
7.1.4. Example: Exchangeability. We illustrate the above techniques in the case of the orig-
inal de Finetti Theorem. Suppose that and that the distribution w of variables 0 (z), 2 € X
is exchangeable, i.e., the joint distribution over any (the same length) tuple of variables is
the same. We assume without the loss of generality that X = Z is a set of integers.

Let Xog ={x:2 >0} and £ = {x : x < 0}. Then, sets X, and X are isomorphic. More-
over, notice that for each x € X is conditionally independent from all ' # x given E.

Let 6 (Xy) and 6 (E) denote the collections of all variables indexed with, respectively, non-
negative integers X and set F. Because sets Xy and X are isomorphic, the joint distribution
of 6 (Xj) is equivalent to the joint distribution of 6 (Xo) U6 (E) . So, it is enough to show that
the marginal distribution over variables 6 (Xj) has representation (1.1). Because of Lemma
1, variable 0 (z) is (probabilistically) conditionally independent from any set of variables
© C 0 (Xo)\ {0 (z)}. Additionally, exchangeability implies that the conditional distributions
of variables in 6 (Xy) given 6 (E) are identical.

Let € be an arbitrary enumeration of set E. Let 0 (&) = (0 (e1),0(e2),...) € Yl be a
random |E|-tuple of elements of the outcome space Y. By the Borel decomposition, there
exists a measurable function fx : [0,1) — Yl such that the w-distribution of 6 () is equal to
fo (nx) - By another application of the Borel decomposition, there exists measurable functions
fo : YIEIx[0,1) — Y such that the conditional distribution of § (x) given 6 (€) is equal to
fz (6 (€),n,) . Invariance implies that we can choose the functions so that f, = f,s for each
x,2" € Xo. Because of (probabilistic) conditional independence, the conditional distribution
of 6 (X) is equal to the joint distribution of variables f (6 (€),7,) . Finally, we can compound
the two functions to obtain

f(mx,ne) = fo (fx (nx),n.) for each x € X.
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7.1.5. Hierarchy of conditional independent sets. In many cases, we are able to identify
an entire hierarchy of conditionally independent subsets. Precisely, suppose that S, is a
collection of subsets of X partially ordered by inclusion. For each element S € Sy, define

LS ={S'€S,:5 28,8 #S},
NS ={S'€S:5 C8}.

Here, LS consists of the elements of Sy that strictly include S; S consists of the elements
of Sy that are either equal or strictly included in S.
Consider a collection {E (S) : S € Sy} of sets of X. For each S € Sy, let

EWs)=J, .E(),

S'eus
and similarly define £ (MS).

We say that collection F (.) is a (Sp-)hierarchy of conditionally independent sets, if for
each S € Sy, F (S) is conditionally independent from X\ E (MS) given E (LIS).

In general, a hierarchy of independent sets may involve a series of conditional independence
statements, whose length depends on the length of chains in collection Sy. In the case
analyzed in the above Section 7.1.4, a hierarchy is almost trivial as it involves only one
level of conditional independence. (Notice that we can take Sy = {X} U {x € Xy} and let
E(X) = E, and E (z) = {z} for each z € Xy. Then, the hierarchy implies that E (z)
is independent from X\ E (z) given F (X).) Next, we present a less trivial example of a
hierarchy.

7.1.6. Example: Multiple customers and goods. Next, suppose that X = C x P and that
distribution w of variables 0 (z) , 2 € X is invariant with respect to the analogy relation from
Section 2.1. W.l.o.g. assume that countable sets C' and P are disjoint copies of the set of
integers Z. Define

COZ{CGCZCZO},Poz{pEPZpZO},
X():O()XP().

Then, set X, is isomorphic to X.
Define a collection of sets

So={X}U{S.:ceCo}U{S,:pe RtU{{z}: 2z € Xo}.
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Define collection {E (S) : S € Sp}:

E(X)={(c,p): c,p <0},
E(S,) = (C\Cp) x {p} for each p >0,
E(S.) = {c} x (P\F) for each ¢ > 0,
E (z) = z for each x € X,. (7.1)

Then, collection E (.) is a hierarchy of conditionally independent sets. Specifically,

e set E (S.) is conditionally independent from X\ ({c} x P) given E (X),

e set F'(S,) is conditionally independent from X\ (C' x {p}) given E (X),

e z = (c,p) € Xy is conditionally independent from any Xo\ {z} given £ U E (S.) U

E(S,).
For each set A, let 6 (A) = {0 (a),a € A}. Then, because Xy and X are isomorphic, the

distribution of 6 (Xj) is equivalent to the distribution of all variables 6 (X). A hierarchy of
conditional independencies leads to a hierarchy of Borel decompositions:

Cm,P ... C2,p C1,P ¢, p
Cm c2 c1,P1 ¢, D1
p2 C, P2
Pm Capm
P/C

(1) Let & be an enumeration of set E (X). Let § (¢¥) = (6 (¢) , ...). Then, there exists
a measurable function fx : [0,1) — Y#X) such that the distribution of 6§ (e¥)° is
equal to fx (nx).

(2) For each ¢ € Cy, let € be an enumeration of set E (S.) . Then, there exist measurable
functions f, : YIF(X)Ix[0,1) — YIF()l such that the conditional distribution of 6 (¢°)
given 6 (éX) is equal to f. (9 (éX) ,ngc) :

(3) For each p € Py, let €” be an enumeration of set E (S,) . Then, there exist measurable
functions f, : YIFXIx[0,1) — YIPEr)l guch that the conditional distribution of 8 (&?)
given 0 (éX) is equal to f, (9 (éX) ,ﬁsp) .

0Here, and below we use notation 8 (€) = (6 (e1), 6 (ez),...) for any finite or infinite tuple & = (e, ey, ...).



DECOMPOSITION OF UNCERTAINTY IN RELATIONAL SYSTEMS 23

(4) For each x = (c,p) € X,, there exist a measurable function f, : Y x YIES

YIES)I%[0,1) — Y such that the conditional distribution of () given 6 (¢¥) , 0 (e°),
and 6 (e?) is equal to f, (0 (e¥),0(e°),0 (&), n,) -

In general, functions f, (or f,, or f,) do not have to be equal for different values of c¢. In
order to make sure that the functions in fact are equal, we need to choose the enumerations
é® more carefully. Let p = (p1,p2,...) be an enumeration of set P\ P,. For each ¢ € Cy, let
e = ((¢,p1),(¢,pa),...). Then, invariance implies that f. = f. for each ¢, ¢ € Cj. Similarly,
an appropriate choice of € ensures that f, = f,y and f, = f for each p,p’ € F, and
x, € Xo.

Finally, we can compose the functions thus obtained to get

f (77X,77$c,775pa779c) = f:L“ (fX (UX)’fc (fX (77X) 7775c) >fp (fX (77X) 7775;7) 77796) :

7.1.7. Example: Multiple customers and two goods. In the above two examples, the appli-
cation of the Borel decompositions always follows a careful choice of the enumeration of the
sets in the conditionally independent hierarchy. The enumerations have to be "consistent"
in a certain sense. The precise notion of "consistency" is difficult to explain with elementary
definitions and we postpone it till Section 7.2. Here, we only observe that sometimes, we
may need to enumerate sets in more than one way. Going ahead of the formal statements,
we observe that different enumeration of set £ (.S) will correspond to different orientations
of shock ng.

We illustrate the role of multiple enumerations in the example from Section 5.5. Suppose
that X = C x {p1,p2}, C is equal to the set of integers, and that the distribution w is an
invariant distribution.

Define sets E' = {(¢,p) € X : ¢ < 0} and Xy = X\E. As in the exchangeability case, Xy
and X are isomorphic, and finite sets S. = {(¢,p1), (¢, p2)} are conditionally independent
from X(\S. given E. Additionally, the joint distribution of pairs of variables 6 (S.) and 6 (S,)
given 0 (E) are equal.

Let h: X — X be an analogy-preserving bijection that exchanges the names of the goods:
for each (¢, p;), h(c,pi) = (¢,p—i), where —i € {1,2} and —i # i. Notice that

h? =id. (7.2)

Let € be an enumeration of set E. Then, h (€) = (h(e1),h (ea), ...) be another enumeration
of set E. Let 6 (€) and 0 (h (€)) be random |E|-tuples of elements of the outcome space Y.
Define a mapping h: YIE — YIEl 5o that for each realization 6,

W (6(2) = 0 (h(2)). (7.3)



24 MARCIN PESKI
(Compare with equation (F.3) from appendix F.1.) The above equation characterizes map-
ping h uniquely; moreover, his a bijection on Y7l

Let P = {id, qo} be the regular set of orientations from Section 6.6. Let [ = [O, %) and
Iy = [0, %), then, interval [ is partitioned into intervals Iy and go (Ip) . Recall that

g =id. (7.4)

Finally, fix customer ¢ and an enumeration § = (s1, s9) of set S,.

By the Borel decomposition, there exists a function dy : Iy — Y'#l such that the (un-
conditional) distribution of 6 (&) is equal to dg (1y), where 7y is chosen from the uniform
distribution on Iy. Define function fx : I — Y¥I by

_ r (1x) if nx € o,
fe (nx) = (;L—l o fE) (0" (nx)), if nx € qo (Do)

Then, by the invariance of distribution w, the fact that h preserves analogies and that qq
preserves the measure, the (unconditional) distribution of 6 (€) is equal to the distribution
of f& (nx). Moreover,

fxoq = ho Ix-

By another application of the Borel decomposition, for each ¢, there exists a function
5.+ YIEl x Iy — Y2 such that the conditional distribution of the ordered pair of variables
0(s) = (6(s1),0(s2)) given 6 (€) is equal to the distribution of . (0 (€),n.), where 7. is
chosen from the uniform distribution on /. Let d.; and .2 denote, respectively, the first
and the second coordinate of function 6,. Define function f. : Y/¥I x I — Y so that for each

Te
5071 (0 (é) 7770) if Ne € [0;

w2 (F7100(@) 05" () s ifme € 0 (1)
Consider a pair of random variables (more precisely, functions of random variables 6 (¢) and
Ne):

fc((?(é),nc)—{ .

(fo(6(@).m), 1o (R (6(&)) 00 (n0)))
By the definition of function f., definition (7.3), and equations (7.2) and (7.4), the pair is
equal to

(£.0@ .10 £ (h(6@).00 () (7.5)
B { (0,1 (0(8) 1) 0e2 (0(8) me)) if ne € Iy,
a (50,2 (il o0 (€),q (Uc)) +0c,1 (ﬁ o0 (€),q (Uc))) , if ne € qo (Lo) -

The joint distribution of the variables (7.5) is equal to the conditional distribution of pair
0 (s) given 0 (€) . Indeed, if n. € Iy, the claim is immediate; if 7. € o (Ip), then the claim is
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implied by the invariance of distribution w, the fact that h preserves analogies and that qq
preserves measure. Notice that invariance implies that f. = f. for each ¢, ¢ > 0.

Finally, we can "glue" functions f. and fx together. Define function f : I? — Y so that

f(anTlc) = fc (fX (nX) 7776)'

The above remarks imply that the conditional distribution of variables

0(5) = (f (nx,me) 5 f (g0 (nx) 5 q0 (nc)))

given ny is equal to the conditional distribution of 6 (5) given 0 (€) = fg (nx). This fol-
lows immediately from the definitions of functions fy and fr. Together with conditional
independencies, the last step leads to the demanded decomposition.

7.2. Representation of relational systems. It turns out that each relational system can
be equivalently described through an algebraic group. This is an important observation that
allows us to use the language and tools of group theory.

Recall that bijection g : X — X preserves analogies (see Section 7.1.3), if each tuple
Z = (x1, ..., zx) is analogous to tuple

g-T=(9(x1),....9(Tx))- (7.6)

Let GG be the set of all bijections that preserve analogies. It is easy to check that G contains
identity mapping and G is closed with respect to taking inverses and compositions. In other
words, G is an algebraic group. We say that G acts on set X and we write G — X.”

It turns out that the descriptions through analogy relations and through groups of bijec-

tions are equivalent.

Lemma 2. Any two tuples T and &' are analogous if and only if there is a analogy-preserving
bijection g such that g -T = 7.

Proof. We show that if X is countable, and (X, ~) is a relational system, then for any two
finite and analogous tuples Z,2' € X, there exists a relation-preserving bijection g such
that g - © = &’. The proof is a simple exercise in a back-and-forth method (Poizat (2000)).
It is enough to construct enumerations zZ and Z’' of X such that 2*) = z and Z® = 7. Fix
a bijection ¢ : X — N. For each [ <k, let z; = 2, and 2] = x}. For each | > k, suppose that
zp and z, for I' < k are constructed.

e If/isodd, choose 2,41 = argmin{i (2) : z € X\ {z1, ..., 1} } . By the extension axioms,

there exists 2/ ; such that tuples 2)" 2,1 and 2/®" 2] | are analogous,

"For a more thorough introduction to group theory, see, for example, Lang (2002) or Dixon and Mortimer
(1996).
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e If | is even, choose 7/, = argmin {i (2) : z € X\ {21, ..., 2} } . By the extension ax-
ioms, there exists 21 such that tuples 2V "z, and 2’ (Z)Azf 41 are analogous.
O
The following table describes groups of permutations associated with examples of relational

systems used in this paper: For each set A, let 114 denote the group of all bijections of set

A. Following the group-theoretic terminology, we refer to I14 as the symmetric group on A.

Relational system Section | Group Spanning family C*
Trivial 5.1 Iy {z,z € X}

M. customers, goods 2.1 e x Ip {Sp,p € P},{S;,ce C}
M. goods, discon. customers | 5.2 IIp % (IIg)" {Sp,pe P},S, forpe P
Cust., goods, incomes, prices | 5.3 IIe x IIp {Sp.p € P} ,{S.,ce C}
Bundles of goods 5.4 Ilp {S,,p € P}

M. customers, two goods 6.6 I % 1) {S.,c e C}

Table 1. Examples of group actions.

Here, symbol "x" denotes the direct ("Cartesian") product of two groups, "x" denotes a
semidirect product, and (HC)P is a direct product of P copies of group II¢."

Notice that notation (7.6) extends the action of group G onto finite tuples of X. Similarly,
if we define g-U = {g-x:x € U} for some U C X, we can extend the group action onto
subsets of U. In the same vein, we can extend the group action to infinite tuples, tuples of
sets, sets of sets, sets of tuples, etc.

Suppose that Xy is a subset of X and H is a subgroup of G (i.e., H C G and H.is a
group). Say that the action group H on Xj is isomorphic to the action of group G on X
if there exists an analogy-preserving bijection a : X — X, such that for each ¢ € G and
he H aogoat€ Hand a~'ohoa € G. In particular, set X is isomorphic to X.

We are ready to state the representation theorem of the compact relational systems.

Theorem 4. Suppose that X is a countably infinite, relational system (X, ~) finitely many
types of 1-tuples and it is %-compact. Let G be the group of all analogy-preserving bijections.
Then, there exists set Xo C X, a collection of concepts Sy, a partition {E (S),S € So} of
set X, and a subgroup H C G such that

(1) The action of group H on Xy is isomorphic to the action of group G on X.

8Group IIp x ()" consists of all pairs (g, k) of bjections g € IIp and functions h : P — I The group
action on X = C x P is defined through the following formula:

(g:h) - (e;p) = (h(g-p)-c,9-p).
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(2) Collection {E (S),S € So} is a So-hierarchy of conditionally independent sets.
(3) For each S € Sy, each enumeration € of set E (S), set {h-é:h & H /h-S =S} is
finite.

The motivation behind the statements of the theorem follows from the examples and
discussion from the preceding section. The first claim ensures that set X is isomorphic to
X. Second, the Theorem finds an appropriate hierarchy of conditional sets. Finally, there is a
consistent (with respect to the action of group H) way of choosing finitely many enumerations
of the elements of the hierarchy.

The goal of this section is to develop ideas used in the proof of Theorem 4. In the rest of

this section, we always assume that
1

V<55
7.2.1. Multiply transitive group actions. Notice that all groups from Table 1 are either equal
to the symmetric groups on some infinite set or the groups are (possibly, different kinds of)
products of such groups together with some finite groups. As it turns out, this is not an
accident. In fact, our results show that the groups associated with %—compact relational
systems can be represented as (kinds of) products of infinite groups of all permutations and
(possibly) some finite groups.

It is useful to formalize some properties of symmetric groups. Say that a group action
is transitive, if for any z,2’ € X, there is g € G so that g - + = 2’. The group action is
n-transitive if each n-tuple of distinct elements of X can be mapped (via some g € G) into
any other n-tuple of distinct elements of X. The group action is highly transitive if it is
n-transitive for each n. Notice that each symmetric group is highly transitive.

It is convenient to define slightly weaker versions of multiple transitivity. Say that B C X
is a block if for each g € G, ether g- B = B or g- BN B = &. An infinite group action is
block n- (or highly) transitive, if there exists finite block B C X such that the group action
on blocks G —— [B] is n- (or highly) transitive.

It turns out that finite multiply transitive group actions are relatively rare. A collection of
results known together as the Classification of Finite Simple Groups (CFSG) implies that all
finite 2-transitive group actions belong to either one of eight well-understood infinite families
and or to one of finitely many special (so called sporadic) cases. The first two families are
| X |-, or (]X| — 2)-transitive, and the remaining 6 families are at most 3-transitive. All the
infinite classes of finite 2-transitive groups are listed in appendix B.1.2. Additionally, all

6-transitive finite groups are either | X |-, or (|X| — 2)-transitive.

7.2.2. Types. All definitions stated in the language of analogy relations have simple coun-
terparts in the language of groups. As an example, we restate and expand the definition
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of a type. Let e and f be two arbitrary X-based objects: elements of X, finite or infinite
tuples of elements, subsets, tuples of subsets, etc. Let Gy = {g € G : g - f = f} be the set of
analogy preserving bijections that keep object f fixed. Then, G is a subgroup of G (i.e., a
group that is a subset of GG). A relative type of e given f consists of all objects that can be
obtained from e by bijections g € G,

le;fl={g9-e:9€ Gy}

For example, the (unconditional) type of e is equal to the set of all all objects that are
obtained from e by bijections g € G, [e] = [e;@]. If fi,..., f, is a list of objects, we often
write [e; f1, ..., fn] to denote the relative type of e with respect to the tuple f1"..." f,.

It is useful to distinguish two types of relations between objects e and f : Say that e is
f-definable, if [e; f] = {e}; e is f-algebraic, if |[e; f]| < oco. Of course, any f-definable object
is also f-algebraic. Moreover, if e is f-algebraic, and f is h-algebraic, then e is h-algebraic.

7.2.3. Concepts. Recall that a concept is a set S C X such that sup,.¢|[S;z]| < co. In
particular, S is x-algebraic for each x € S, and there exists an uniform bound on the size of
the relative type [S;x]. A block is a concept S such that for each z € S, S- is x-definable.

Concept S is coinfinite, if for each other concept S’ € [S], S’ is not S-algebraic, i.e.,
|[S; 57]| = oo. It turns out that each concept S is contained in a coinfinite concept S’ in such
a way that S is S’-algebraic (Lemma 36). The last property means that, for many purposes,
it is enough to work with coinfinite concepts and keep track of the associated (standard)
concepts.

Lemma 34 shows that each concept has a code: There is a tuple Z such that concept S
is z-definable. Codes are useful whenever it is easier to analyze the group action on finite
tuples rather than (possibly, infinite) concepts. It is often important to control the length of
the code, i.e., the number of elements in tuple Z. In general, the length may depend on the
index of the concept. However, it turns out that each coinfinite concept S has a two-element
code: there is a tuple Z € X? such that S is Z-definable (Lemma 34).

Let S be the set of all coinfinite concepts. Consider the action of group G on the set of
elements and coinfinite concepts, G — X US. A concept C' C X U S under such group
action is defined in exactly the same way as the concept S C X under the group action
G —— X. Because C' may contain elements of collection S, C' is sometimes referred to as a

concept of concepts.

7.2.4. Compact group actions. Next, we restate and refine the definitions that underlie the
assumptions of our results. Take any group action G — X. Finite set U C X is local if
for all tuples z,7’ C U such that the tuples have the same type, [Z] = [Z'], the two have
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the same relative type given U, [Z’; U] = [z; U] . Also, say that set U is k-local if the relative
analogy is required to hold only for k-tuples 7,7’ € U*.

The group action is 1-compact, if it has finitely many types of 1-tuples, and there exists
local Uy such that for each local U D Uy and x € X, there exists local U’ D U, x such that

log |U'| <4 +1log|U]. (7.7)

Lemma 37 shows that, if the group action G —— X is ¢)-compact, then the group action
G — X U S satisfies two quasi-compact properties: for each k,

e there exists a constant ¢, such that for each finite V| there exists k-local U O V such
that

log |[U| < ¢log |V|+ ¢, and (7.8)

e for each ¢ > 0, z € X US, and finite set V' D [z], there exists k-local U C [z] such
that V' C U and for each 2’ € [z], there exists a k-local U’ D U, 2’ so that

log |U'| <1+ +1log|U].

The two properties are related but logically independent.

7.2.5. Finitely many tuple types. Say that the group action has finitely many tuple types,
{[z] : z € X*}| < oc. For
example, any highly transitive group action has finitely many tuple types.

if for each k, the set of types of k tuples of elements is finite,

It turns out that i-compact group actions have finitely many tuple types. The formal
argument is presented in Appendix B.2. Here, we give an intuition and illustrate the role of
compactness. For simplicity, suppose that the group action G —— X is transitive, i.e., there
is only one type of 1-tuples, X = [z]. On the other hand, suppose that there are infinitely
many types of 2-tuples, [{[z 2] : z,2" € X}| = o0.

Take any local set U. There exist 2o € U and x; ¢ U such that the type of tuple zq"z; is
not represented in U : for each x, 2’ € U, tuples 2"z’ and x; "z are not analogous. Take any
local set V' O U, x;. Consider a graph with nodes V' and such that there exists a directed edge
from node z to node ' if and only if "2’ s analogous to x¢"x;. Let k denote the out-degree
of node x € V (the number of edges going out of x) and [ denote the in-degree of x. By
transitivity and because V is local, the out- and in-degrees do not depend on the choice of
x. By the choice of 2y and x7, there is no edge that goes out of a node in U into a (possibly,
different) node in U. Thus, the number of edges that go out of nodes in U and the number
of edges that go into the nodes of U can be bounded by

Uk < (IVAU[) L and [U[1 < ([VAU]) k.
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The two inequalities put together imply that |U| < |V\U| and |V| > 2|U|. Because the
argument does not depend on the choice of local U, the latter inequality leads to a direct
contradiction with bound (7.7).

Additionally, we show that the group action G —— X U S has finitely many tuple types
(Lemma 35). The idea is to represent each cofinite concept by its two-element code (see
Section 7.2.3). Then, the number of types of n-tuples of coinfinite concepts can be bounded
by the number of types of 2n-tuples of elements of X. Because of the finitely many tuple
types, it is easy to show that & must be countable.

7.2.6. Robustly exchangeable concepts. Let C C X US be an infinite set of elements and/or
coinfinite concepts. Say that C is exchangeable if C' is infinite and the group action G —— C'
is highly transitive. Say that C'is robustly exchangeable, if C' is exchangeable, and for each
finite tuple 7 C X US, there exists finite set Cy C C' such that for each permutation g € G¢ 4,
g - Cy = Cp and the group action G¢z — C\Cj is exchangeable. Here, robustness means
that the highly transitive group action G¢ —— C' cannot be "broken" by a finite tuple u,
except for, possibly, some finite set Cj. We often refer to set Cy as the exceptional set.

It turns out that robustly exchangeable concepts can be found, in some sense, everywhere.

Lemma 3. Consider the group action G — X US. For each tuple t C X US and each
x € S such that the relative type [x; T] is infinite, there exists a robustly exchangeable concept

C such that C\ [z; Z| is finite.

Below, we sketch an argument behind Lemma 3 and illustrate the role of compactness.

The Lemma is formally proved in Appendix D. The subsequent sketch can be omitted in the
first reading. From now on, we assume for simplicity that x,z C X.
Splitting sequence. Here, we argue that there exists a tuple w O = and w € [z;Z] such
that the relative type [w;w] has infinite cardinality and the group action Gy —— [w;w] is
block highly transitive (Lemma 41). We need a few preliminary observations. Because of
the CFSG, it is enough to show that the group action G —— [w;w] is block 2-transitive.
Second, Lemma 25 shows that 2-transitivity follows if we show that the relative type [w;w]
cannot be split: for all w' € [w;w], set [w;w]\ [w';w” W] is finite. Finally, suppose that for
each tuple w O 7 and w € [x; Z|, the relative type [w;w] is infinite and it can be split, i.e.,
there exists w’ € [w;w] such that set [w; @]\ [w'; w w] is infinite. In such a case, we show
that there exists a splitting sequence (Lemmas 26 and 27): a sequence Sy, tg, 1, ..., € [2] such
that for all m, if 5,, = (S0, to, .-, Sm, tm) , then for all m, k > 0 (a) Spmakt1, tmaks1 € [Smr1; Sm)
and (b) for any ¢ such that t,,"t € [s;, " Sma1; Sm_1], t & [Smi1; Sm). See Figure 1.

We show that the existence of the splitting sequence contradicts the 1)-compactness of
the group action G —— X (Lemma 28). Indeed, find a sequence of local sets U, such that
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My work/A pisanina/learning/decomposition/splitting.wmf

FicUrE 1. Splitting sequence

Upn 2 S0, ..., tn—1. Because of the compactness, and the fact that |{sg,....,t,} < 2(n+ 1), we
can pick local sets so that

1
lim sup ﬁlog |Up| < 29 (7.9)

n—oo

On the other hand, for each n, and each m < k — 1, tuples §,,_1"s,, and §,,_1 t,, are
analogous. Thus, there exists a permutation g, ,, such that g, - $m—1"5m = Sm-1 tm.
Because U, is local, we can assume that permutation g, ,, keeps set U, fixed, g, € Gu,.
Let A, = {sn,t,}, and by backward induction on m, define sets

An,m - {Sm} U An,m—i—l U Inm * An,m—l—l g Un

The definition of the splitting sequence, together with the backward induction on m, shows
that A, m+1 C [Smt1, Sm) and sets A, 1 and gp, g - Apmtr are disjoint. Thus,

\Un| > |Ano| > 2|An,] > ... > 2"

which contracts (7.9).

Robust exchangeability. From now on, assume for simplicity that the group action Gz —
[w;w] is highly transitive (rather than, more generally, block highly transitive). We show
that [w;w] is robustly exchangeable.

It turns out that it is enough to show that there is no tuple @ 2 @ and element w’ € [w; W]
such that the relative type [w’; u] and the set [w; @] \ [w'; @] are infinite (see Lemma 41). The
claim is based on the following counting argument. On the contrary, suppose that @ and w’
with such properties exists. Let V' = [w'; @] . Let V,, be an increasing sequence of subsets of
[w; w] such that |V,| = 2n, and |V, NV| = |V,\V| = n. Consider a sequence of local sets
U, 2V, such that (7.9) holds.

By definition, set V' is u-definable. Similarly, set V' N U, is (a"U,)-definable. These two
observations yield a lower bound on the cardinality of the relative type of tuple u given

w U :
Ha;vanH > HVﬂUn;w;UnH'

Because the action G5 —— [w; @] is highly transitive, and set U, is local, the group action
Ggv — [w; w] N U, is also highly transitive. Therefore, the cardinality of the relative type
of set VN U, given w"U, is equal to the number of ways a set of cardinality |V N U,| can
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be chosen from a cardinality |[w;w] N U,|. Hence,

;W 2
Hﬂ,w,Un” > ( Hw‘,/wrlr;[]n’ ) > ( n > > enlogn7
n n

where the last inequality comes from Stirling’s approximation.
Finally, suppose that the length of tuple @ is k. Then,

logn

1 11 1
~log Ul = - Tog |[5 Ul = ——log [0, U] 2

— 00 when n — oo,

which contradicts (7.8).
Robustly exchangeable concepts. In the last part of this subsection, we construct a
robustly exchangeable concept C' such that C\ [z; Z] is finite.

Let D = [w;w]. The above argument implies that, for any set D’ that has the same type
as D, either the sets D'\D and D\D’ are finite or the intersection between D and D’ is
finite. Indeed, notice that D’ = [w'; @] for some w’ and tuple @'. Then, if D\D" and D N D’
is infinite, then there exists z € D\ D’ such that the sets [z;w,w']| C D\D’ and D\ [z;w, @]
are infinite. But this contradicts the robust exchangeability of [w;w] .

Say that set C'is complete, if for each C” of the same type as C' but C’ # C, the intersection
of C'and (" is finite. Lemma 42 shows that there exists a complete and robustly exchangeable
set C' D D such that |C\D| < co. The idea is to define C' as the union of all D’s such that
D'\D and D\D' are finite. An elementary argument based on Lemma 24 shows that set
C\ D must be finite.

Finally, suppose that C' C X is a complete and robustly exchangeable set C. Lemma 43

shows that set C' must be a concept.

7.2.7. Correlation and independence. Consider now two robustly exchangeable concepts C'
and C" and the action of group G¢ v that fixes both concepts. Then, the action of G¢ ¢
on each of the two concepts is highly transitive except for possibly finite exceptional set.
(Indeed, because concept C’ has a code 7/, C" is z’-definable, which implies that Gz C G¢r.
Because C' is robustly exchangeable, there exists a finite set Cy C C such that the action
of G N Go C G is highly transitive on C\Cp.) For simplicity, we assume that the
exceptional sets are empty and that group actions Goor —— C and Geor —— C' are
highly transitive. In particular, for any two tuples Z,y € C of equal length, there exists a
permutation g € G¢ v such that g-z = 3.

We are interested in the joint action of G'¢cvon the union of the two concepts. The
difficulty is that permutations over one of the concepts may depend on the permutations
over the other concept. There are two extreme cases: On the one hand, permutations on
the two concepts might be independent of each other. Precisely, for each tuple x C X U S,
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say that the joint action of G ¢ is Z-independent if there are exceptional sets finite sets
Co C C and C} C ' such that for each two tuples u,v C C\Cj of equal length, and any two
tuples @/, v" C C\C}| of equal length, there exists a permutation g € Gz N G¢ v such that
simultaneously ¢ -« = v and ¢ - © = v. In other words, apart from the exceptional sets, the
permutations on C' and C’ can be chosen independently. The two concepts are independent,
if they are Z-independent for all tuples z.

On the other hand, the two actions can be perfectly correlated. Formally, for each tuple
T C X US, the joint action of G¢ ¢ is Z-correlated, if there are finite exceptional sets Cp C C
and Cj C C" and a correlating function j : C\Cy — C'\C}, such that for each permutation
g € Gz N Ger and each tuple w € C, and each g € Geoor, g-j(u) = j(g-u). That means
that the permutation on concept C' uniquely determines the permutation of C’. The two
concepts are ZT-correlated, if they are Z-correlated for all tuples z.

At first sight, one can imagine that there is a range of imperfect correlations in which
permutations on one concept limit, but not determine, permutations of the other concept.
However, it turns out that, for each tuple Z, any two robustly exchangeable concepts can be
either Z-independent or Z-correlated (Lemma 39). The argument is elementary, i.e., it does
not rely on any compactness assumptions.

Additionally, if the group action is ¥-compact for any i < oo, then any two robust
exchangeable concepts are either independent or correlated. The argument relies on the
counting argument from Section 7.2.6: Notice that if the two concepts are Z-independent
and T z-correlated for some tuple T and z, then the correlating function is defined by x
given Z. Because the number of the choices of the correlating functions is proportional to n!
where n is the number of elements in the intersection of C' with some local U, the counting

argument would lead to a contradiction with compactness.

7.2.8. Coordinate system. The discussion in Sections 7.2.6 and 7.2.7 focuses on either indi-
vidual robustly exchangeable concepts or the relationships between pairs of such concepts.
Next, we take a macroscopic view to describe the properties of the collection of all robustly
exchangeable concepts. Observe that the correlation of robustly exchangeable concepts is
transitive: if C'is correlated with C” and C” is correlated with C”, then C' and C” are corre-
lated. Thus, we can divide all robustly exchangeable concepts into correlation classes, i.e.,
collections of concepts such that all concepts from the same collection are correlated and all
concepts from two different collections are independent. Because of the above discussion,
any two concepts from two different classes are independent. Lemma 4 shows that each
correlation class contains the "largest" member.
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Lemma 4. There exists a family C* of mutually disjoint and independent concepts such that

each concept C is correlated with the unique concept C' € C* and the correlating function
j:C — (" is such that for each x € C, x C j(x).

The proof is constructive. The idea is to use the correlating functions to construct equiv-
alence classes on the elements of concepts in a correlation class B. Take any C,C" € B.
Informally, say that x € C and 2’ € C" are directly connected if ' = j(x), where j is the
correlating function between C' and C’. Say that z and x’ are connected if there exists a
finite path of elements x = x, ..., x,,, = 2’ such that each consecutive elements are directly
connected. We show that the relation of being connected is a relation of equivalence, that
the union of all connected elements is a coinfinite concept, and that the collection of such a
union forms a robustly exchangeable concept Cp.

Define C* as the family of all representative "largest" concepts Cj for all correlation classes
B. Let S* = |JC* € X US be the union of all concepts in C*. By construction, the concepts
in C* are mutually independent, and each robustly exchangeable concept is correlated with
exactly one concept in C*. Additionally, we can show that all concepts in C* are disjoint. (If
not, and there are concepts C' and C’ with a non-empty intersection C'N C’, then one shows
that at least one of the concepts C' or C’ cannot be the largest member of its correlation
class.) We refer to C* as the spanning family of concepts.

Concepts in C* can be interpreted as "dimensions" of the relational system and elements of
S* as "coordinates." Families C* corresponding to the examples from this paper are described
in Table 1. For example, in the multiple customers and goods case (Section 2.1), family C*
contains two elements: the concept of all concepts of customers and the concept of concepts
of goods. As another example, consider the multiple goods with disconnected customers
case from Section 5.2. There are infinitely many members of the spanning family: a concept
of the concepts of goods and all concepts of goods. Finally, in the multiple customers and
two goods case from Section 5.5, family C* contains only one element: the concept of the
concepts of customers.

Hierarchy of concepts. The elements of S* and C* can be partially ordered by inclusion.
More precisely, notice that each object e € X US* UC* can be associated with its S*-cover:

L(e)={reS" :e#randeCx}.

For any two concepts C, C" € C* such that the intersection of L (C') and C” is not empty, say
that C' is included in C', write C' < C’. One shows that the relation "<" is a proper partial
order on the spanning family C*.

In the multiple customers and goods case from Section 2.1, neither of the two elements of
family C* is included in the other. In the multiple goods with disconnected customers case
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from Section 5.2, each concept of goods is included in the concept of concepts of goods. In
general, the partial order may lead to chains of concepts in C* with two or more elements.
Coordinatewise description. We interpret the cover L (e) as a "coordinatewise" descrip-

tion of the object e. The next result establishes three properties of the cover:

Lemma 5. 1. For each e, L (e) is finite. 2. For each x € C € C*, L (xz) = L(C). 3. For
each L C S8*, sets {x : L (z) = L} and {C : L (C) = L} are finite.

The first property means that the "coordinatewise" description is finite; the second, that
the description of concept C' is the same as its elements; and the third that the "coordi-
natewise" descriptions L (.) can be used to almost uniquely identify elements x or concepts
C € C*. Here, "almost" means "up to finitely many other candidates." Together, the Lemma
gives meaning to our interpretation of C* as "coordinates" and L (.) as the coordinate de-
scription of object e.

In the examples from Sections 2.1 and 5.2, each element x € X has two coordinates: a
concept of a good and a concept of a customer. The two coordinates determine z uniquely.

We sketch the argument behind Lemma 5. First, each cover is finite. This follows from
the fact that there are finitely many types of concepts and that, by a definition of a concept,
each element can be contained in at most finitely many concepts of the same type.

Second, the cover of each S € C' € C* is the same as the cover of C, L (S) = L (C) . If not,
then there is S € L(S), but not S’ € L(C). It is easy to show that S’ is S-algebraic and
that the relative type [S’; C] is infinite. Using these two facts and the robust exchangeability
of C, we show that there is a robustly exchangeable concept C’ C [S'; C] such that C’ is
correlated with C'. Because C’ consists of concepts S’ that contain concepts S € C, it must
be that C’ is "larger" than C' in the sense defined above. However, that contradicts the
choice of C' as the largest member of its correlation class.

The proof of the third property relies on Lemma 3 stated above in Section 7.2.6: We need

to show that if e is an element of X or C*, then e is L (e)-algebraic. Instead, if the relative
type of e given L (e) were infinite, then one could find a robustly exchangeable concept C
that consists of elements of type e and that would be independent from concepts that contain
the elements of cover L (e). By taking the largest member C’ of the correlation class of C,
we would show that there exists S’ € C' € C* such that e € 5" and S ¢ L (e). That would
yield a contradiction with the definition of the cover L (e).
Coordinate labelling (. Notice that each concept C' € C* is countable (as a subset of
countable set §*). Because all concepts in the spanning family C* are disjoint, we can find
a map [ : §* — Z such that for each C' € C*, f|¢ is a bijection between C' and the set of
integers Z. We interpret 3 as a labeling of elements of &*.
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We use the labeling to clarify the meaning of independence in the spanning family C*.

Lemma 6 below shows that, for each concept C' € C* and elements sg, s; € C, there exists a
permutation g with the following properties:

® g- S0 = 51, g 81 = S0,

e g-s=s for each s € §* such that L (s) N {sp,s1} = &. In particular, g - s = s for

each s € C\ {s¢,51} .
e 5(s)=p(g-s) for each s € S*\ {sg, 51} -

Any permutation of such form is called a permutation of (sg, s1)-type.

Lemma 6. For each concept C' € C*, any two elements s, s’ € C, there exists a permutation
of (s, s")-type.

The idea behind Lemma 6 is to use the robust exchangeability and mutual independence
of concepts in C*.

Positive and negative coordinates. Theorem 4 claims the existence of a subset X, of
space X such that X is isomorphic to X. Here, we show how X, s constructed.

The construction uses labeling 8 to divide coordinates into positive and negative. Say
that coordinate S € S* is positive if S and each coordinate S’ € L (S) has a non-negative
label, 5(S),5(S") > 0. Let S§§ C S* be the collection of all positive coordinates S € S*.
Define

Xo={zeX:L(x) TS}, andSoz{ﬂL:LgSa‘}.

Here, set X, consists of all elements of X that have positive coordinates. Set Sy consists of
intersections of positive coordinates; because each intersection of concepts is a concept, set
Sy consists of concepts that are contained only in the positive coordinates. By convention,
we take @ € S, (1@ = X, which implies that X € S,.

Say that permutation h preserves negative coordinates if 5(S) = p(h-S) for all S €
S*\S&;. Let G"™ C G be a subgroup of permutations that preserve negative coordinates.
Then, G™ C Gx,.

Lemma 7. There exists a bijection o : X — X such that for any h € G™, atohoa € G,
and for any g € G, aogoa~t € G. In particular, o preserves relations.

That means that the two group actions G — X and G"¢ —— X, are isomorphic. Ac-
cording to the Lemma, it is possible to go back and forth between isomorphic group actions
without losing any information. As an important consequence, invariant distributions under
each of the group actions correspond to invariant distributions under the other.

Mapping « from Lemma 7 is constructed in steps: Fix a bijection v : Z — N that maps
integers into natural numbers (we assume that N includes 0). Suppose that Ao C A; C ...
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is an increasing sequence of integers such that | JA; C Z. Let V4 C X US* U C* be the set
of objects e such that for each 5 (L (e)) C A. Using permutations of (sg, s1)-type (Lemma
6), we construct a sequence of permutations go, g1,... such that for each i, g; (Va,) € Vy(a,),
and 9i|VAZ. = 9i+1|VAi- The limit of such mappings forms the required bijection «. Because
each permutation g; preserves relations, the limit o preserves relations as well. Finally, the
isomorphy between G —— X and G"¢ —— X follows from another application of Lemma 6.
Conditional independence. Recall the notion of a hierarchy of conditionally independent
sets from Section 7.1.5. Here, we describe how such a hierarchy can be constructed.

Notice that collection Sy is partially ordered by inclusion and is closed with respect to finite
intersections. For each x € X, let min,cg sns, S denote the smallest element of collection Sy
that contains z. Notice that min,egsns, S is equal to minges ses, © = () (L (x) N S) . For
each S € &y, define the set of elements x such that S is the smallest member of collection
So that includes x,

E(S)={r € X :minycgges, * =S5} .
It is easy to see that { £ (S) : S € Sy} is a partition of set X. In order to shorten the notation,
for any collection of sets L C Sy, let £ (L) = USeLE ().

Using permutations of (s, s1)-type (Lemma 6), we show that
Lemma 8. E(.) is a So-hierarchy of conditionally independent sets.

Finite orientations. As in the examples, we associate elements S of family Sy, or, more
precisely, sets E (S) with shocks 7 € U. In order to construct orientations, we need more
precise information about sets F (S) . Recall the multiple customers and two product example
discussed in Section 7.1.7. There, the orientations of set £ = F (X) and sets S. = E (S,)
for positive S, are constructed with the help of a certain permutation h such that h? = id
and that h - (¢,p1) = (¢, p2) . It turns out that such as construction can be generalized.

Lemma 9. There exists subgroup H C G"™ such that H — Xy and G™ —— Xy are
isomorphic and for each S € Sy, the action of the S-fixing subgroup Hg on set E (S) is
finite, Hh‘E(S) che HSH < 0.

Lemma 9 is proven in three steps. In Appendices E.6 and E.7, we develop tools that
we use later to ensure two required properties of H. The construction of H is presented in
Appendix E.8.

This ends the proof of Theorem 4.

7.3. Decomposition of uncertainty. In the last part of this section, we show how The-
orem 4 together with applications of tools developed in Section 7.1 lead to the proof of the
necessity part of Theorem 3.
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7.3.1. System of orientations. We use Theorem 4 to construct a system of orientations on set
Xo. We start with some notation. There are finitely many types ¢ of concepts in collection
So. For each type ¢, fix a representative S* € t NSy and fix an enumeration & of set £ (S*).
Let H' = {h|p(st) : h € Hg:} be the finite set of permutation of set E (S'). For each concept
S etNnSy, fix a permutation hg such that hg-S* = S and let eg = hg - €.

Second, we construct orientations. Partition the interval I = [0,1) into equal length
subintervals I, indexed with enumerations € € H*. For each h € H', let p; be the measure-
preserving bijection on I such that for each subinterval I, p (I,) = In,n and py, is an affine
monotonic shift on each of the subintervals.” Then, it is easy to check that for each h and
W,

Phi' = Ph © Ph (7.10)
which implies that Q' = {ps, h € Hg} is a finite regular set of orientations (i.e., it contains
identity, it is closed with respect to compositions, and {p, (l,q) : h € H'} is a partition of
the interval 7). Notice that equation (7.10) ensures that the structure of the group H' is
replicated by the structure of compositions in Q*.

Third, let U = {ns:S € Sy} be a collection of i.i.d. random shocks associated with
concepts in Sy. Let @, = Q! be the set of orientations of shock ng and let O =
USGSO {ns} x @,s be the space of orientations of shocks in U.

Fourth, we extend the action of group H on space O. For each permutation h € H, let
q(h,S) = hj shhs|psty € H' be the restriction of permutation h, shhgs € Hg: to set E (S*).
Then, for any two permutations h and A/,

q(W'h,S) = (hy.sh'hhs) ey = ((hih.sh'bis) (hynshhs)) |5t (7.11)
For each orientation (ng,p), define

h-(ns,p) = (77h~s,p Opq(h,S)) . (7.12)

We show that equation (7.12) defines a system of orientation. Indeed, because of (7.10)
and (7.11), for any two permutations h and A/,

Wh-(ns,p) =h (h-(ns,p))

which means that equation (7.12) extends the action of group H on the set of orientations
O. By the equivalence between group actions and relational systems (Theorem 2), XqU O is
an extension of the relational system on X,. Also, if 0 is a tuple of orientations of the same
concept, and tuple o’ is analogous to o0, then all elements of tuple o' are also orientations of

9For each h and hg, there exists b such that for each z € I, then py, (z) = = + b.
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the same concept. The last two properties of a system of orientation follow directly from
(7.12).

Finally, we show that orientations of shocks ng can be "tied" with enumerations of set
E(S). Let
E(S)=les;S]={h-&:he Hand h-S" =S5}

be a finite set of orientations. We define a mapping p : O — U E(S) : for each

Ses,
orientation o = (ns, pr) , let ’
p(0) := hgh-é". (7.13)

Then, for each permutation g € H,

p(g-0)=hysq(g,S)h-& = hg.gh;}gghsh e
= gghsh-e" =g-p(o).
In other words, the movement of orientation o under any permutation g is traced by the

movement of enumeration p (o).
Then, set E (S) is a finite set of enumerations of E (.9).

7.3.2. Invariant distribution w*. Let Z = UtYlE (s)] , where t varies over types of concepts in
collection Sy. For each mapping 6 : X — Y, and each (finite or infinite) tuple € = (eq, ey, ...)
of elements of X, let 6 () = (0 (e1),0 (e2), ...) be a tuple of elements of Y. Define a mapping
O (0) : O — Z so that for each 0 € O,

0 (0) (0) =0 (p(0),

where p is mapping that associated orientations of shocks with the enumerations of associated
sets. Because the collection of sets {E (5) : S € Sp} is a partition of X, there is a one-to-one
relationship between mappings ¢ and O (0).

Suppose that w € A (Y)” is an invariant distribution over s. Let w* € A (Z°) be the

associated distribution over mappings O (#): for any measurable subset £ C YX | let
w* (O (E)) =w(E).

Because mapping O is one-to-one, there is a one-to-one relationship between distributions w
and w*. Moreover, distribution w* is invariant with respect to the action of group H :

Recall that the collection of sets {E (S) : S € Sp} is a hierarchy of conditionally indepen-
dent sets. Together with Lemma 1, this implies that distribution w* exhibits the following
hierarchy of conditional independencies:

CI: For each o € Og, 0 (0) is conditionally independent from

{9 (0),0 €| J{0s : S € 5,5\5 # @}}
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given
{9(0'),0’ €| J{0s: 5 €8,5 2 S}}.

Let A5 € A[0,1)° be the product of uniform distributions. A realization from A% is denoted
by 1 € [0,1)° . For each tuple of orientations 6 € O™, let 6 () = (g1 (1 (51)) s - qn (1 (Sy))) -

Lemma 10. For all S € S and all orientations o € Og, there exist tuples of orientations
o° such that if o and o are analogous, then 0°6° and o'"o° are analogous, and for all H-
invariant distribution w* € A (Z O) that satisfies CI, for allt € T, some o' € Og and S € t,

there exist (ot, éot)-symmetm'c functions f' such that w is equal to the joint distribution of

f'(0°0° (u)), foroe Os,S €t, andt € T.

The proof is by induction on the hierarchy of conditional independencies. At each level
of the hierarchy, we apply a version of the Borel decomposition (Lemma 48 from Appendix
F.1) to decompose variable 6 (o) for some orientation o = (ng, p) into an independent shock
ns as well as the realizations of variables 6 (o) for orientations o’ of shocks that are higher
in the hierarchy. We combine function f together with the outcomes of the decompositions
of higher-level orientations to find an symmetric function f*. The proof of the Lemma can
be found in Appendix F.2.

7.3.3. Proof of necessity part of Theorem 3. We use the results and notation from the above
section. Let w be an invariant distribution and let w* be defined as in the previous subsection.
Let V' be the set of types of elements of Xj. For each type v, fix a representative z¥ € tN Xj.
Because the collection of sets {E (S):S € Sy} is a partition of X, there exists a unique
SY € Sy such that ¥ € F (SY). Fix an orientation o” of the shock associated with concept
SY. Let 0¥ = 0°° be the tuple of orientations from Lemma 10

Let t¥ be the type of concept Sv. . Let fo = " : [0, l)ntv — v12)] be a function from
Lemma 10.

Recall that p (0”) is an enumeration of set £ (SV). Let m" be the position in that enumer-

ation occupied by z". Define function

TP (U, ey Upe ) = (ftv (uq, ...,untv))mv .

We show that function fv is (zV, 0" 0")-symmetric. Indeed, suppose that tuple =" 0”0 is
analogous to V" 0""0". Then, the tuple of orientations 0”0 is analogous to 0”"6”. By Lemma
10,

0 (0)(a") = [ (0"°8" (u)) and O (0) (3) = f* (0”5 (u))
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given a realization of shocks w. Because (p(0)),,. = (p(0")),,» = ¥ and because of the
definition of operator O (.), it must be that

(/" (0"0" (), = (f" (00 (),

For each x € v N Xy, find the tuple of orientations 6 that is analogous to tuple 0" " 0". It
follows from Lemma 10 that the joint distribution of

1P (0" (u) forzeveV

is equal to w.

8. COUNTEREXAMPLE

Here, we present an example of a 1-compact relational system with finitely many types of
1-tuples that admits invariant distributions without finite decomposition. This shows that
the constant %) in the statement of Theorem 1 cannot be increased too much.

Assume that X is a collection of finite subsets of the set of natural numbers N including
the empty set @. Thus, X is countable. For each n € N, define a binary relation on pairs
(x,2") e X :

R,z if either n € xNa’, orn ¢ x U
Let ~ be the analogy relation induced by binary relations {R,,,n € N}. In Appendix I, we
show that the relational system is 1-compact.

Lemma 11. For each local U C X, and each x, there exists local U' O U, x such that
U'| <2[U].

Suppose that U = {n,,n € N} is a collection of i.i.d. random shocks uniformly distributed
on the interval [0, 1]. For each x € [0, 1], define

1 1 1 1
0 (l‘) = ZnexZ_” (nn - 5) + Zm;sz—n (1 — Mn — 5) .

It is easy to check that the joint distribution w of variables 6 (z) is stationary. Notice that
for any z,2’, the correlation between variables 6 () and 6 (z') is equal to

/ 1 1
Ew [9 ('T) 0 (3j )] = Zn¢:pAm’ 2n+2 o Zn¢w&x’ 2n+2 :

In particular, E,, [0 (z) 0 (/)] = E, [0 (y) 0 ()] if and only if x A 2/ = y A y/. Because there
are infinitely many sets x A 2/, there are infinitely many correlations.

We show that w has no finite decomposition in the sense of Theorem 1. Indeed, sup-
pose that there is such a decomposition with assignment functions &k : X — {1,...,ko} and
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n: X — U™ for some finite kg, mo. For each pair of tuples (x1,x2) and (x],x}) , write
(1, 22) R (2}, 2) if

k(z1) =k (), k(z1) =k (z}), and for each m, m’ < my
Non (T1) = Ny (22) if and only if n,, (z]) = n, (25) .

Then, R is an equivalence relation on X?2. Because all shocks are i.i.d., all the variables
associated with R-equivalent tuples (z1,x2) and (2, x%) have the same correlations,

B0 (x1) 6 (22)] = E[0 (1) 0 (x3)],

where F is the expectation operator.

Because kg, my < oo, R has finitely many classes of equivalence. In particular, there
are finitely many values of correlations between variables 6 (x), and 0 (x2) for all pairs of
r1, 29 € X. Contradiction.
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APPENDIX A. CONCEPTS IN THE MULTIPLE CUSTOMERS AND GOODS CASE

Recall the example from Section 2.1. There is an alternative way of characterizing the
relational system (X, ~), where X = C x P. Let II¢ be the set of all permutations (i.e.,
bijections) of C. Similarly, let ITp be the set of all permutations of P. Let G = Il x I1p. The
set GG is a group of permutations of set X. As it is discussed in the beginning of Secton 7.2,
there is a natural extension of the action of group G on the tuples of elements of X. Then,
two tuples 7 and Z’ are analogous if and only if there is ¢ € G such that g -7 = 7’.

Using the group of permutations GG, we can restate the definition of the concept. For each
set S C X and each permutation g € G, let g- S = {g-x: 2z € S} be the permutation of
set S. Then, sets S and S’ are analogous relative to z if and only if there exists permutation
g € Gsothat g-x =x and ¢g-S = 5. In particular, set S is a concept if there exists ig < oo
so that for each z € S, [{¢g-S:9g € G and g -z = z}| < ig.

The rest of the proof is divided into four steps. Suppose that S is a concept.

(1) If there are (¢,p),(¢/,p) € S such that ¢ # ¢, then S, C S. Indeed, let Cs =
{c:(d,p) € S}. Then, Cs\ {c} is not empty. We show that if C'\Cys is not empty,
then S cannot be a concept. Then, either Cs\ {c} or C'\Cy has infinitely many
elements. We consider only the former case (the latter is similar). Fix ¢/ € C\Cs.
For each ¢ € Cs\{c}, find a permutation 7. : C' — C such that 7 (¢) = ¢,
7 (") = 7 () and such that m|c\(o ey = id |co\fe ey Let idp € IIp be the identity
permutation of the set of goods, and let g» = (7.,idp) for each ¢ € Cs\ {c}. Then,
for each cj,c) € Cs\{c} st. ¢ # ¢, 7 (Cs) # 7o, (Cs), and gg (S) # g (S)-
Because set Cs\ {c} has infinitely many elements, there are infinitely many different
sets g - .S such that (¢,p) € g-S. Thus, S is not a concept.

(2) It follows that if S., S» C S for some ¢ # ¢, then for each p, S, C S, which implies
that § = X.

(3) In a similar way, we show that if there are (¢,p), (¢,p’) € S such that p # p/, then
S, C S, and if if S, S,y C S for some p # p/, then S = X.

(4) Suppose that (¢, p),(c,p’) € S for some ¢ # ¢ and p # p’. We show that S = X. If
not, then by the above steps, either S.NS = {(¢,p)}, or Se NS = {(¢,p)}. W.Lo.g.
suppose that the latter. For each ¢’ # ¢, ¢, find permutation g.» = (n.,idp) € G
such that 7o () = 7o ("), er (") = 7en (), and

The proof of the second part of the Lemma is similar.
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APPENDIX B. GROUP ACTIONS

B.1. Group theory. We review some basic notation, definitions, and results from group
theory (for details, see Lang (2002) and Dixon and Mortimer (1996)). Suppose that G —— X
is a group action. The cardinality of group G is called the order of G, and the cardinality
of X is called the degree of G — X.

For each set X, the set II(X) of all permutations on X is a group, and it is called a
symmetric group of X. If X is finite and | X| > 1, there exists a unique subgroup A (X) C
IT(X) with index |[II(X) : A(X)]| = 2. Group A (X) is called an alternating group of X.
(Alternating groups can also be defined for infinite sets X.) When X = {1,...,n}, then we
write II,, and A,,, instead of, respectively, IT (X) and A (X).

Group action G —— X is transitive, if for any z, 2’ € X, there is ¢ € G such that g-z = 2.
Group action G — X is k-transitive, if for any U C X, if |U| < k—1, then G.p.ep — X\U
is transitive. Group action G —— X is highly transitive, if it is k-transitive for each k. The
symmetric group is highly transitive, and the alternating group is (|X| — 2)-transitive.

B.1.1. Index. For each subgroup H C G, for each g € G, set gH := {gh : h € H} is called a
coset of H. Different cosets are disjoint, and the (possibly infinite) cardinality of the collection
of cosets is called an indexr of H in G: [G : H] := |[{gH : g € G}|. The next result presents

some bounds on indices.

Lemma 12. If J C H C G are groups, then |G : J| = |G : H|[H : J]. If H,H, C G are
groups, then |G : Hi N Hy] < [G: H1| |G : Hy], and [Hy : Hi N Hs] < [G: Hy.

Lemma 13 (Dixon and Mortimer (1996)). If X is finite, G — X is alternating or symmet-
ric, and H C G is a subgroup such that |G : H] < |X|, then H is alternating or symmetric.
If X 1is infinite, G — X is highly transitive, and H C G is a subgroup with a finite index,
|G : H] < oo, then H is highly transitive.

B.1.2. Classification of finite simple groups. The entire list of finite and 2-transitive groups
can be derived from the powerful result known as the Classification of Finite Simple Groups
(see Dixon and Mortimer (1996)). There are eight infinite families of such groups:
(1) symmetric group II,, for each n;
(2) alternating group A, for each n;
(3) affine group AT L4 (b) and some of its subgroups, where d € N, and b = p™ is an nth
power of a prime number p, and the degree is equal to p"?;
(4) projective groups PSLg(b), where d € N, and b = p™ is an nth power of a prime p,
and the degree is equal to p";
(5) wnitary groups PSUs (b), where b = p" is an nth power of a prime p, and the degree
is equal to b + 1;
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(6) symplectic groups S Py, (2), where m € N. The symplectic group has two actions
with degrees equal to 27! (2™ + 1), and 2™~ ! (2™ — 1);
(7) Suzuki groups Sz (b), with b = 22! and the degree equal to b* + 1,
(8) Ree groups R (b) with b = 3*"*! and the degree equal to b + 1.

Families 3-6 are also called classical Lie groups. Additionally, there are finitely many of
the so-called sporadic groups that do not belong to any of the infinite families. Only the
alternating and the symmetric group are 6-transitive.

Lemma 14. Suppose that Xg & X1 and G is a group such that Gx, — Xy and G — X,
are 2-transitive, and they belong to the same family 3-8. Then, | X1| > 2|Xo|.

Proof. The result directly follows from the characterization of degree in cases 7-8. In cases
3-5, the result follows from the fact that if G has degree p™ and H is a subgroup of G
that belongs to the same family 3-5, then H’s degree is equal to p” for some n/ < n (see
?). Finally, in case 6, the result follows from the fact that the group with degree equal to
2m=1(2m — 1) is not a subgroup of the group with the degree equal to 2™~1 (2™ + 1). O

Lemma 15. Suppose that a sequence X1 & Xo & .. is such that

log | X, 1
lim —0g| | < —

n—00 n 10’

and G,, — X,, is 2-transitive for each n'’. Then, G —— X is highly transitive.

Proof. It is enough to show that for each n, there exists n’ > n such that Gx , — X,/ is
symmetric or alternating. Suppose not, and that there exists n* such that for each n > n*,
Gx, — X, is 2-transitive, but not symmetric nor alternating. We can assume that n is
large enough so that Gy, —— X,, does not belong to the sporadic cases.

Because & < g, there exist n > n* such that [ X, 9| < 2|X,|. On the other hand, there
exist n < ng < ny < n+ 9 such that Gx, —— X, and GXn1 — X, belong to the same
infinite class of 2-transitive actions. By Lemma 14, 2|X,| < 2|X,,,| < |X,,| < |Xntol-
Contradiction. 0

Lemma 16. Suppose that X = XoUX; is a union of disjoint finite sets Xy, X1 and G — X
is a group action such that for each i, |X;| > 8, G- X; = X, and for each T; € (XZ-)6,
Gz, — X_; is 6-transitive. Then, for each i, each enumeration T; of X, Gf;« — X_; 18

alternating or symmetric.

Proof. For each i, find permutation m; € II(X;) \A (X;) such that (m;)* = idy, . For each i,
and for each T_; € X5, the Classification of Finite Simple Groups implies that Gz , — X;

10Here, and elsewhere, log has always basis 2.
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is either alternating or symmetric. Denote
G? - {g “dlx; € {ideﬂ-i}}J
G ={g:glx, =idx.}.
Because of the choice of m;, G C G? C G are subgroups of G and [G? : GY°] < 2.

We show that G —— X _; is 6-transitive. Indeed, by the hypothesis, G — X _; is 6-
transitive. Take any two tuples Z, 7’ € (X,Z-)6 and any g € GG such that g - 7 = 7’. Because

Gz +—— X, is alternating or symmetric, there is ¢’ € Gz such that (¢'g) |z; € {idx,, m}.
Then, ¢'g- 7 =7 and ¢'g € GY.

By the Classification of Finite Simple Groups, GY — X _; is alternating or symmetric.
Lemma 13 shows that G — X _; is alternating or symmetric. O

B.2. Finitely many tuple types. Group action G —— X has finitely many tuple types, if
for each k, |{[£] reX k}| < 00. In this section, we show that compact group actions have
finitely many tuple types. The next simple observation is used without mention throughout
the rest of the paper.

Lemma 17. If G — X has finitely many tuple types, then for each finite tuple u C X,
Ga— X has finitely many tuple types. In particular, for each k, H[i, ul: @ e Xk}| < 00.

Proof. Notice that for each k,

{[z;u4];z € X*}| = |{[z,4];2 € X}}| < 0. O

Lemma 18. For any local U and finite z* C U with length I, set U is a local set of group
action Gz« — X.

Proof. Take any z, 7' € U* and assume that [7; %] = [Z’; Z*] . By the definition of the relative
type, there is a permutation g such that ¢-z* = z* and g-7 = ¥’. If set U is local, then there
is a ¢’ such that ¢’ € Gz, ¢ -U =U and ¢’ - ¥ = &’. Thus, U is local under Gz —— X. 0O

Lemma 19. Suppose U C X 1is local under group action G —— X, and that there are xo € U
and x1 ¢ U, [x1] NU # @ such that xo" 1 is not analogous to ="z for any x,x" € U. Then,
for any local V-2 U, x,

either |V 0O [xo]| > 2|U N [xo]], or |V N xy]| > 2|U N [x4]]. (B.1)

Proof. We need to show that either m§ < mj, or my < m;. Recall the argument described
in Section 7.2.2. Consider a graph with nodes V' and such that there exists a directed edge
from node x to node 2’ if and only if 2"z’ s analogous to z¢ x;. Let k denote the out-degree
of node z. Because V is 1-local, the out-degree does not depend on the choice of x € V' N|[xo] .
Similarly, let [ denote the in-degree of © € V' N [z1]. By the choice of z and z;, there is no
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edge that goes out of a node in U N [z] into a (possibly, different) node in U N [z4]. Thus,
the number of edges that go out of U N [zy] can be bounded by

U0 [zo]| & < [(VAU) 0[] |1
Similarly, the number of edges that go into U N [z1] can be bounded by
U0 [z][ 1< [(VAU) N [2o]] &

The two inequalities put together imply that

Vi, o [(VAU) Q2] [(VAT) N [zo]]

A T2 e oY

which implies that at least one of the inequalities (B.1) holds. O

Lemma 20. Suppose that group action G — X is ¥»-compact group action for some 1 < %
Then, it has finitely many tuple types.

Proof. Let G — X be a 1-compact group action for any ¢ < 1 5 group action. By assump-
tion, any compact group action has finitely many tuple types of 1-tuples. Suppose that it
has finitely many & types for some k& > 1, but infinitely many (k + 1) -types. Then, there are
zo,2* € X and 7* € X*1 such that |[{[x;7*,2%] : © € [x0;Z*]}| =

Find (k + 1)-local U D z*,2* and that for each x € X, there is 2’ € U N [z]. Assume that
U is large enough so that for each local U’, each x ¢ U, there is local U” D U" U {x} so that
log |U'| <4 +log|U|. Let Uy = U and find an increasing sequence of local sets Uy C U; C
and elements 1, xa, ... € [xo; Z*| such that

i |Un+1| S v |Un|’
e U,i1 DU, x,, and
e for each x € Uy, z,, & [v; 7", x*].

By Lemma 18, sets U,, are local under group action Gz«. By Lemma 19, for each n, either

|Unsa N [o; 2°]]
|Un O [0; 7*]]

Ui Oa™sall

> 2.
Un Oz 2]~ N

either

Thus, for either x = z* or x = x,

UnN|
hm—log|U|>hm—lo o0 |U |H 1|| me
0 m=

Contradiction. O
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B.3. Transitivity. A set B C X is a block under group action G —— X if for each g € G,
either g- B = B, or g- BN B = &. Group action G —— X is block (k-, highly) transitive
(if X is finite, alternating) with block B C X, if group action G —— [B] is (k-, highly)

transitive (alternating).

Lemma 21. Toke any group action G — X such that all types of 1-tuples have infinite
cardinality, |[x]| = oo for each x. For any finite U and V, there is g € G such that g-UNV =
.

Proof. The proof proceeds by induction on |U|. If |U| = 1, then the claim follows from the
assumption about infinite cardinality of types of 1-tuples. Suppose that the claim holds for
all finite V' and all U such that |U|] < k — 1. Take any U,|U| < k —1 and u ¢ U. By
the repeated application of the inductive claim, we can find infinitely many g1, g, ... such
that g, - U N (V UUpen 9m - U) = @. Suppose that there is u such that g, -u € V for
each n. Because V' is finite, there exists vy such that set Ny = {n: g, - u = v} has infinite
cardinality. Because of the assumption of infinite cardinality of types of 1-tuples, there exists
g € G such that g-u ¢ V . Because V is finite and sets g, - U are disjoint, there is n € Ny
such that gg, - U NV = &. This ends the proof of the inductive claim. 0J

Lemma 22. If G —— X is block highly transitive with block B such that |B| < |X|, then
for each x € B, there exists block B’ € [B] such that G, — X\B is block highly transitive
with block B'.

Proof. Notice that Gg —— X\ B is block highly transitive with block B’ € [B]\ {B}, and
|Gp : G.| <|B]. The result follows from Lemma 13. O

Lemma 23. Suppose that G — X 1is transitive and for each x, there exists finite U, C X
such that Gy, — X\U, is transitive. Then, G —— X is block 2-transitive.

Proof. For any z, define B, = [J{z': 2’ is z-algebraic} . Because of the transitivity of the
group action Gy, — X\U,, it must be that B, C U,, and B, is finite. Because G5, D
G: 2 G.u,, and U, \ B, is finite, it must be that G, — X\ B, is transitive.

o elatsa] [”; 2}]. Then, for each 2’ € B,, each 2" € By, 2"
is x-algebraic, and x” € B,. This implies that B, = B, for each 2’ € B,. Because for any
g € G, g-B, = B,.,, it must be that B is a block. Because Gp —— X\B is transitive, it
must be that G —— X is block 2-transitive with block B. O

For any z, o', 2" X, [2";2] =

Lemma 24. Suppose that the group action G — X 1is transitive and it has finitely many
tuple types. Fix x and tuple T and for each T’ such that [z;T] is infinite and for each g € G,
(g [z;2]) \ [z; 7] is finite. Then, X\ [x;Z] is finite.
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Proof. For any two sets A, B, recall that AA B = (A\B)U(B\A) s the symmetric difference
between A and B. The symmetric difference is symmetric (A A B = B A A), and for any
triple of sets, (AA B) A(AAC)=BAC.

For each 7' € [z], define S (z') = ¢ - [x; Z] for some ¢ such that g -z = &’ (of course, the
definition does not depend on the choice of g). Suppose that S (z) is infinite, and for each
7' € [z], the set S (z')\S (%) is finite. Suppose that X\S (Z) is infinite.

By definition, S (Z) = [z;Z| is infinite. Because of the finitely many tuple types, there
exists a finite set Xy (zZ) € X\S(Z) such that Gz - X (%) = X, (Z) and that for each
e X\ (S () U Xy (z)), the relative type [2'; Z] is infinite.

Because of the finitely many tuple types, there exists N < oo such that for all ' € [7],
the cardinality of set

W(z,2) = (5(x) A S(2)\ (Xo (7) U Xo (7))

is bounded by N. Let N be the smallest constant with such a property.

We show that N > 0. Indeed, it is enough to show that there exists Z’ such that
S (') \ (S () U Xp (7)) is not empty. But this follows from transitivity of G —— X.

Find 7’ so that |W (z,z’)] = N. By Lemma 21, there exists g € G such that

g9-((S(2) AS (@)U X (2))\Xo (7))
NS (z) A S (') U X () =
Let 7 = g - /. Then,
W (@, 2") = (5 (') A § (") \ (Xo (z') U Xo (2"))
= (S(@) ASE)US (@) AS @)\ (Xo (') U Xo (27))
((S (@) & S (2")\ (Xo (2) U Xo (2)))
U((S (@) A S () \ (Xo (2') U Xo(2"))) -

The two sets in the union above are disjoint. Moreover, because S (z) A S (z”) is disjoint
from Xg (') \ Xy (Z), it must be that

((S(z) &S (2")\ (Xo (#) U X0 (2))) 2 (S () A S (27))\ (Xo (2) U Xo (27))) = W (2,27)

and, because S () A S (Z') is disjoint from Xy (Z”) \ X, (%), it must be that

(5(2) A S (Z))\ (Xo (2) U Xo (2)) 2 (S (2) A S (7)) \ (Xo (2) U Xo () = W (2, 7).

Thus, |W (z',2")| > |W (z,2")| + |W (z,z")| = 2N, which yields a contradiction with the
choice of constant N. O
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B.4. Splitting. This section establishes a useful technical property of group actions with
finitely many tuple types. Let G — X be a group action with finitely many types. Suppose
that the type [z] is infinite, |[z]| = co. The type [z] can be split, if there is z € [z] such that
sets [z;x] and [z]\ [2; ] have infinite cardinality. The type [z] can be robustly split, if for
each tuple u C X and 2’ € [z] such that |[2/; @]| = oo, the relative type [2'; 4] can be split.
A splitting sequence of elements of type [z] is a sequence s, to, $1, ..., € [x] such that for
all m, if 5, = (S0, 0, ... Sm, tm), then for all m,k > 0 (&) Spmikt1, tmikt1 € [Sma1; 5m) and
(b) for any t such that t,,"t € [Sy," Smt1; Sm-1), t & [Sm+1; 5m)-

Lemma 25. Suppose that the group action G — X is transitive. If it cannot be split, then,

G —— X s block 2-transitive.
Proof. Tt follows from Lemma 23. O

Lemma 26. Suppose that the group action G —— X has finitely many tuple types. If the
type [x] can be split, then there exist so,to, s € X such that |[s; so, to]| = 00 and for any t so
that to"t is analogous to sy" s, t & [s; So, to] -

Proof. 1If the group action G — X can be split, then there exists z € [z] such that sets
[z; 2] and [z] \ [z; #] have infinite cardinality. By Lemma 24, it must be that there exists a
permutation g such that [z;x] \g- [z; 2] is infinite. Take sg = 2 and tq = ¢ - z. Because of the
finitely many tuple types, there exists s € [z;x] \g - [2; ] such that the relative type [s; s, to]
is infinite. The Lemma follows. UJ

Lemma 27. Suppose that the group action G —— X has finitely many tuple types. Let
x,u € X be such that |[x;u]| = 1. Suppose that the type |x] can be robustly split. Then, there
exist a splitting sequence of type [u].

Proof. We construct a splitting sequence sy, to, s1, ... of elements of type [u] and a sequence
Tg, T1, T2, ... € [z] such that for each m, the relative type [z,,; §,,_1] is infinite, and 2% , 2! 2,11 €
[%m; Sm—1] , where 2° and 2" are the unique elements such that 2%, "s,, and 2! "t,, is analogous
to 2" u. The construction follows from a repeated application of Lemma 26. 0

Lemma 28. Suppose that the group action G — X 1is 1p-compact for some 1 < % Then,

there is no splitting sequence.

Proof. Find Uy from the definition of ¢-compactness. Find a splitting sequence sy, g, s1, ...
Find a collection of local sets U,, 2 Uy, s,, t,,. Because of 1)-compactness, we can ensure that
U,| < 2¢(Vol+2n),

On the other hand, for each 0 < m <mn, find ¢,,, € Gy, such that g, ,, - 5m—1 = 5,,—1 and
Gmn - Sm = tm. Such bijections exist because U, is local. Let A, , = {s,,t,}, and for each
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m < mn,
Am,n - Am—i—l,n U Imn * Am+1,n-

Then, by induction and the choice of the sequence, A,,+1., C [Sm+1; 5m). Moreover, for each
t € Gmm Amt1ns tm T € [Sm” Smt1; Sm—1], and t & A, ,. Thus, sets A, , and gy Amy1,n are
disjoint. Because they have equal cardinality, |A,, .| = 2 |Ami1.], and Ap, = 2". Because
Ay, C U, it must be that |U,| > 2". Contradiction. O

B.5. Generation and small orbits. Group action G —— X has uniformly bounded 1-
types, if there exists a constant m < oo such that |[z]| < m for each x € X. The next Lemma
shows that, for group actions with uniformly bounded 1-types, any finite set of permutations
extends to a finite subgroup of permutations.

Lemma 29. Suppose that G — X is a group action with uniformly bounded 1-types. For
any finite set Go C G, there exists a finite subgroup G' C G so that Go C G'.

Proof. Let m = sup,¢x |[x]| . For each z € X, choose a bijection i) : [x] — {1, ..., |[z]|} . For
each g € G, define permutation bijection g, = i, 0 g o z[;]l of set {1,....k.}.
For each [2], let U [z] = {[2'] : gj/) = gjy) for each g € G’} . Then, {U []}4cx 18 a finite

partition of the infinite set {[z] : x € X} of all 1-types, and ‘{U [x]}[x]gx‘ < (m)9Mm < o0
For each [z], let Gy 2 { Ja1:9€G } be the smallest group generated by permutations
{gm 1g € GO} . Because G,) is a subset of symmetric group Gj,;; € II{1, ..., |[z]|}, ‘G[x]| <
ml.
Without loss of generality, assume that idx € Gy and that g~! € Gy for each g € Gy. Let
G' ={g1.--9n : i € G,n < oo} be the set of all finite products of permutations in Gg. Clearly,
G’ is a group. Moreover, for each g € G, gy € G- Hence, |G'| < (sup, !G[x]})‘{U[m]}[x]gx‘ <

00. [l

B.6. Countable extensions. The last result establishes a simple extension property of
permutations on a countable set.

Lemma 30. Suppose that X is countable. Suppose that gg,qg1,... € G is a sequence of
permutations such that there exists a partition of set X into finite sets P ={V C X} such
that for each’ V€ P, g, -V €V for each n, and there exists ny so that for each m > ny,

Then, there exists g that preserves analogies and such that g -V = g, ....q1 - V for each
VePp.
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Proof. For each V' € P, define g -V = g,,....q1 - V. Similarly, for each V' & P, define
gV = (gny....q1)” - V. Then, g is a bijection on P, and g~! is its inverse.

Let Vp, Vi, ... be an enumeration of partition P. By taking subsequences, we can find a
sequence of permutations ¢°, g', ... such that g*-V = g-V for each V € P, and ¢""|y,L.ov, =
d'|vou..uv.- Then, the pointwise limit g = lim; o, ¢* is a well -defined bijection. Moreover,
for each finite Z, there is 7 such that ¢' -7 = ¢ - 7, and 7 and ¢ - T are analogous. 0

APPENDIX C. CONCEPTS

This section deals with concepts and their properties. Throughout the section, we assume
that G —— X is a group action, and we list additional properties only when they are needed
for extra results.

We list all definitions used in this appendix. A concept is a subset S C X such that
ig 1= Sup,cg |[S; ]| < co. For each concept S, let i (S) = sup, g |[S; z]| < o0.

Concept S is a block, if for each g € G, either g- S =S5, or g- SN S = . In other words,
S is a block if 7 (S) = 1.

A tuple of variables Z is a code of concept S, if [S;z] = {S}. For example, if S is a block,
then any = € S is a code of S.

Concept S C X is coinfinite, if for each concept S’ € [S] either S" = S or |[S’;S]| = oc.
Let S be the set of all coinfinite concepts.

It is useful to study the action G —— X U S of group GG on the elements of space X and
coinfinite concepts in S. In order to distinguish concepts under the group actions G — X
and G — X US, we reserve letters S, 5’, 5", s C X for the former, and C,C’,C", ¢ C X US.
Of course, any concept under the former group action is also a concept under the latter. For
each C' C X U S, define the union of elements of C' as

pC=Jocx

Here, we abuse slightly the notation, and we treat elements of C' as subsets of X this is
immediate when z € C' NS, and if x € C'N X, then we interpret = as one-element set {z}.

Say that subset (not necessarily a concept) C' C X U S is robustly block exchangeable, if
C is infinite, Cc — C' is transitive, block highly transitive with finite block B C C, and for
each tuple Z, there exists #’ € C such that |C\ [2;C,Z]| < o0 and G¢,Z — [2';C, 7] is
block highly transitive with block B’ € [B]. If |B| = 1, we drop the word "block."

Two robustly exchangeable concepts C' and C? are Z-independent for some tuple 7 C
X US, if for each 4, there are =, € C* such that |C"\ [z; C', C? 7]| < oo and, for any finite
tuple of concepts 770 C C~, [z}; C',C? 7] = [x}; C',C?,z,77]. Together with robust ex-
changeability, the latter implies that the group actions Gei o2 ;NG ,—i — [xf; C1, C? Z, 777
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are highly transitive. If C! and C? are Z-independent for each tuple Z, then we say that they
are independent.

Two robustly exchangeable concepts C', C? are Z-correlated, if for each i, there are z}, €
[C?] such that |C"\ [z); C*,C?, ]| < oo and a bijection j : [z§; Ct, C?, 7] — [23;C, C? 7]
such that (goj)(z') = (jog)(z') for each g € Gei 2z and each o/ € [¢3;CY,C?]. We
refer to j as the correlating function. Robust exchangeability implies that the group actions
Gorc2z — [zh;C, C?, H] are highly transitive. It is easy to check that if two robustly
exchangeable concepts of concepts are Z-correlated, then they are z’-correlated for each

7 Dz.
C.1. Basic properties.
Lemma 31. If S is a concept, 8" C S, and S" # S, then S" ¢ [S].

Proof. On the contrary, suppose that S’ ~ S, 5" # S, and S’ O S. Find ¢ € G such that
g-S" = S. Consider a decreasing sequence of sets Sy = S’, S, = ¢-S,,_1. Then, S,,_; D S,, and
Sn-1 # Sp. Find n > i (S) and 2 € S,,. Then, i (S) > [{S” € [S] : x € S} > [{So, ..., Sn}| >
n+1>i(S5). Contradiction. O

Lemma 32. Suppose that there exists a finite collection of concepts S such that X = USesS'
Then, there exists S € S such that [S] < oc.

Proof. On the contrary, suppose that |[S]| = oo for each S € S. By Lemma 21, there

exists a sequence of permutations gi, g, ... such that g, - S # g, - S for m # n. Because

X = U S = U S for each n, and S is finite, it means that for each = € X, there
ses SEGn-S

exists S € §, such that = belongs to g, - S for infinitely many n. This yields a contradiction

with the fact that S is a concept. ([l

Lemma 33. If C is a concept under the group action G — X U S, then pC' is a concept
under the group action G — X and C is pC-algebraic.

Proof. For each xz € X,

{P:z e P, PepCl} = |{pC':xepl, C €|C]}
<Hs:zes,seS}Hsupl{C':s€ ', C e€[C]}

seS

<i(9)i(C) < .

This shows the first part of the claim. For the second, notice that for each x € X,

{C'elCl:zepC} =] {C'elC]:5 e,

S'e[S|:xoeS’
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Hence, for each = € pC,

{C"e|C]:pC"=pC} <{C"€[C]:z € pC'} < 0.

C.2. Coinfinite concepts.

Lemma 34. Suppose that G — X has finitely many tuple types. Any concept has a code.
Any coinfinite concept has a two-element code.

Proof. Suppose that S is a concept. If S is finite, then any enumeration Z of S is a code of S.
Suppose that S is infinite. By Lemma 31, for each S" € [S]\ {S}, there is always 2’ € S\5".
Thus, we can find a set V C S, |V| < i(5) such that if " € S and S" O V, then S’ = S.
Then, any enumeration Z of set V' is a code of S.

Suppose that S is a coinfinite concept. Consider two cases. Suppose that for each x € 5,
there exists 2’ € S so that {S" € [S]:x € S}N{S" € [S]:2' € S} ={S}. Then, [S;z,2] =
{S}.

Alternatively, suppose that there exists = € S, such that for each ' € S, there exists S’ €
[S]\ {S} such that z, 2" € S’. In other words, S = US'ESS/’ where S = {S" € [S]\{S}:xz € S'}.
By Lemma 32, there exists Sy € S such that SN S is S-algebraic. Because S is a concept,
it must be that Sy is S-algebraic. That contradicts the fact that S is coinfinite. O

Lemma 35. Suppose that G — X has finitely many tuple types. If S is a concept, then
G —— X U[S] has finitely many tuple types. Moreover, G — X US has finitely many tuple
types.

Proof. Suppose that S is a concept. By the first part of Lemma 34, concept S has a code
Z. Let M be the length of tuple z. Then, the number of n-tuples of the group action G ——
X U [S] is not higher then the number of Mn-tuples of the group action G — X.

Suppose that S is a coinfinite concept. First, we show that there are finitely many concepts
S such that pair of elements 7* € X? is a code of concept S. Notice that Z* partitions the
space X into relative types Il = {[z;z*] : x € X}. Let M = |II] be the size of the partition.
Then, M is not higher than the number of types of 3-tuples. Because G —— X has finitely
many tuple types, M < oo.

One easily checks that if concept S is coded by z*, then S must be measurable with respect
to partition II. In particular, there are at most 2 concepts encoded by tuple z*.

Take any n. The number of types of n-tuples 5§ € (X US)" of the group action G — XUS
is bounded by (2M )n times the number of types of 2n-tuples of the group action G — X. 0O
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Lemma 36. Suppose that G — X has finitely many tuple types. For each concept Sy, there
exists the largest coinfinite concept Ty O Sy such that Sy is Ty-algebraic. If Co C X US s a
concept under the group action G —— X U S, then there exists the largest coinfinite concept
To D pCy such that Cy is Ty-algebraic.

Proof. By Lemma 35, the group action G —— [Sp] has finitely many tuple types.

We show that for each concept S € [Sp|, there exists a coinfinite concept T such that
S C T and S is T-algebraic. For each S € [Sp], define B (S) = {S" € [S] : S" is S algebraic} .
We show that B (S) is a finite block. The claim follows from the following observations.
First, because of finitely many types of 2-tuples, B (.S) is a union of finitely many finite sets
[S”;S], hence B (S) is finite. Second, for each permutation g, g - B (S) = B (g -S). Third,
B (S) = B(S5') for each S" € B(S5). Indeed, because S and S’ have the same type, it must
be that |B (S")| = B (S). Moreover, if S” € B(S’), then S” is S’-algebraic, and hence, also
S-algebraic. Thus, B (S") C B(S).

Define T' = UB (S) . Then,

1S T1 < 1S5 BB (5); T]| < [B ()] (5) < oo

Next, we show that T is coinfinite. Suppose not. Then, there exists 7" such that 7" # T
and T" is T-algebraic. Suppose that 7" = B (S”). Then, S’ ¢ B (S). On the other hand,

15 51 < (1575 B (SOHIB (S TN T[T S]]

Because each of the terms on the right-hand side is finite (|[S’; B (57)]| < |B(9)|, |[B (S");T"]] <
i(S),|[T";T]| < oo, and |[T; S]| = 1) the left-hand side is finite as well. This contradicts the
fact that 5" ¢ B (S5).

Finally, we show that, for each coinfinite concept S, there exists the largest coinfinite con-
cept T such that S C T and S is T-algebraic. Let S = {T": T'C X is a coinfinite concept} .
For each S, define B(S) = {T'€ S: S5 CT and S is T-algebraic} . Then, because of the
finitely many tuple types, one shows that 7' = UB (S) € B(S). Such T is the largest
coinfinite concept that contains S.

The Lemma follows from the above observations and Lemma 33. [l

C.3. Compactness properties of G — X U S.

Lemma 37. Suppose that the group action G — X has finitely many tuple types and it is
Y-compact for some ) < oo. Consider the group action G — X US. Then, for each k,

(1) there exists a constant ¢y such that for each finite V, there exists k-local U 2O V' such
that log |U| < log|V| + ¢, and
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(2) for each ¢ > 0, v € X US, and finite set V' DO [z], there exists k-local U C [z]
such that V- C U and for each x' € x|, there exists a k-local U" 2 U,x" so that
log |[U'| < ¢ +¢+1log|U|.

Proof. By definition, the group action G — X has finitely many tuple types. By Lemma
35, the group action G —— S has finitely many 1-tuples. Fix a finite set 7 C S such that
7T contains exactly one representative for each type of concepts [S] C S. For each S € T,
find a two-element code z° € X2. Also, fix a finite set set X, C X that contains exactly one
representative for each type of elements of X. Let X, be a finite set of 2-tuples that contains
a two element code T for each concept s € S such that s N Xy # @ and such that z"s is
analogous to 7°° S if s € [9].

Fix k > 2. Because G —— X is 1-compact, there exists a 2k-local U, such that for each
2k-local U D Uy, each = € X, there exists local set U’ O U, x such that

log |U'] < 4 +log|U]. (C.1)

Assume that Uy O Xg, X, and that, additionally, Uy is large enough so that each type of
4k-tuples is represented in U : for each tuple z € X**, there exists ' C U, that is analogous
to .

For each U C X such that U O U, and U is 2k—local under the group action G — X,
define

S _ A= ~_S _
U —UUUSeT{SE[S].sxGSx for some z C U}
=UU{seS:sNnU # o}

The second equality follows from the fact that U is 1-local, and that U D Uy O Xo, Xo.
Notice that there exists a constant M = sup,.y |[{s € S : & € s}| such that

\U°| < M |UJ|. (C.2)

For each x € U®, define ¢V (z) = z if v € X and ¢V (z) = & C U if 2"z is analogous to
S~ z% for some S € 7. The choice of the mapping ¢V is not unique.

We show that US C X U S is k-local under the group action G — X U S. Indeed, take
any two k-tuples Z,7' C U such that ¥ and 7’ are analogous. Let ¢ = ¢V (x;) "..."cY (x3,)
and similarly define &. Because tuples Z and Z’ are analogous, there exists a tuple d such
that 2°d and 7'"@ are analogous. Because U contains the representatives of all types of
4k-tuples, there exists a tuple z"w C U such that ¢'d € [2"w;U]. Find g € Gy such that
g-¢"d = z"w and notice that g € Gys (this follows from the fact that a code uniquely defines
the associated concept, and because of the construction of set US.). Let 2 = ¢ - z. Then,
z'c e [f’“z; US} . Using a similar argument, we can show that 7’'°¢ € [f’“u_); US] . Thus,
z,7 e [2"U%].
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The rest of the proof is concluded in two steps.

(1) For each set V C X US, find set V¥ such that V C (VX)S. We can choose V¥ so
that [VX| < |V|. Because of (C.1) and (C.2), we can find 2k-local U D V* U U,
U C X such that

log |U®| < log |U| +log M < tlog |V + 1 1og |Up| + log M.

(2) Take any x € X US and finite set V' C X US. Suppose that there is ¢ > 0 such that

for each k-local U C [z] such that V C U, there is 2V € [z] so that for each k-local
U'DU,x, |U|>2¢T|U|. Let 2V e 2V N X (if 2V € X, let 2V = 2Y).
Construct a sequence Wy C W; C ... € X of k-local sets under the group action
G — X. Let Wy D U, be a k-local set that is large enough so that W¢ D V.
For each k, find local Wy, O W4, 2WitaOlel Because of 1-compactness, we can find
the sequence so that |[Wj| < 2¥|W,_4| for each k. On the other hand, for each k,
WE N [z] 2V, 2"k and

(W nfz]| =200 (W2 na]].

Thus,
W

. 20k WS N [
lim > lim

= 0
k—o0 |Wk| T k—oo vk |Wg| ’

which contradicts (C.2).

C.4. Robust exchangeability.

Lemma 38. If C is robustly exchangeable concept, and C' is a concept, then either C' O C’,
IC"'NC| =1, or C and C" are disjoint.

Proof. Tt is easy to see that C' N C" is a concept. Thus, it is enough to show that for any
robustly exchangeable concept C, any concept C' C C, C" # C, it must be that |C'| = 1.
Suppose not. Because C” is a concept, then i (C") < co. Find a subset A C C such that
i(C")+2<|A| < oo, |[ANC’'| > 2, and |A\C’'| > 1. Fix g € AN C". Then,

i(C)2Rg-Ciwoeg-CH 2z {g- (ANC) g € Gy}l 21 (C) +1,

which yields a contradiction with the fact that S’ is a concept. O
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C.5. Independence and correlation.

Lemma 39. For any tuple T, any two robustly exchangeable concepts C' and C? are either
Z-correlated or T-independent.

Proof. Suppose that C* and C? are robustly exchangeable. For each i, find zi, € [C"] such
that |C\ [zf; C*,C?,7]| < oo. By robust exchangeability, the group actions G o2z —
[zi; C', C?, 7] are highly transitive for each i = 1, 2.

Find an infinite sequence of distinct elements 2%, z%,... € C* and let E! = {x],...,21}.
Let G, = Gero2 g N[ ),e Bl G,. Because of robust exchangeability, for each n, there is finite
E2 C [23;C', C? 7] so that G,, — [23; C*, C? T] \ E? is highly transitive and G,, - E* = E2.
Of course, the sequence of finite sets E? is (weakly) increasing in the set order, E2 C E?
for each n. To shorten the subsequent notation, take Ej = Ei = & and define C! =
[z8; CY, C?, z) \EL.

If |[E?| = 1, then let j (21) = 2. Because of the high transitivity of G; — C?\E?, j can be
extended to a bijection j : C* — C? such that (go j) (2/) = (jog) (/) for each g € Ger o2 5
and each 2’ € [z}; C*', C?] for any ¢’ € G 2. Hence, C' and C? are 7-correlated.

If E? = & for each n, then, C* and C? are Z-independent.

We show that there is no other possibility.

On the contrary, suppose that E2 = @ and |E2,,| > 2 for some n > 0. Then, group
action G, — C! is highly transitive. Because (Gn N GI%H) - B2, = E?,,, this implies
that G,, — [EZ,,; C",C?] is highly transitive and E2, | is a finite and non-trivial block of
group action G,, — C?. Because highly transitive group action does not have non-trivial
blocks, we get a contradiction.

Alternatively, suppose that |E?| = 0 and ‘ETQLH} =1 for some n > 1. Let B2, | = {xiH} .

For any g, ¢’ € G,,—1 such that g-z}, = ¢'-z; and g-x} ., = ¢z}, |, wehave g-a2 | = ¢'-a2 ;.

2
n+1-*

For each z,,z, € C}_,, define j,, (x,) = g -2, for some ¢ so that g - z;, = z, and

Indeed, if not, then ¢g7'¢’ € G, 11, but g7'¢’ ¢ G2, which contradicts the choice of x

g -2y, = xp. The definition does not depend on the choice of ¢ and for any g € G"',
9 Jzo (T6) = Jgaa (9 T1) -

Because G,, — C? is highly transitive, it must be that j,, (Ci_,\{z.}) = C? (oth-
erwise j,1 (Ch_;\{z}}) # CZ, and there is g € G,_1 such that g - j. (C}_\{zl}) #
jer (CE_\{z}}), which implies that g - C}_,\{z} # C! \{z}} and g ¢ G,). Simi-
larly, one shows that jei (s, (z5) = Cp. Because G, +—— C; is highly transitive, we
have j,, (zb) # Jju, (z}) for @, # z} (otherwise j ,' (2/) would be a block of group action
G C2,) ”

We show that for each x4, 2,2, € C}_y, if @ # 24,2, then j,, (2) = ju, (25) . Suppose
not and find 2}, = j; ' (ju, (25)) # 2o.
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o If ¥) # x4, 2, then there isg € G, o, such that g -z, # ;. But then, g -
ot U, (20)) = Jya, (gar (9 20)) = Gt (Jay, (23)) = ),
o If 13, = x,,7), then there is g € G, such that g -z, # x;. But then, g -z, =
9 Jai U, (1)) = Jiit (g, (21)) = 20
Define j* : C! | — C?_ | by j*(z3) = Ju, (zp) for some z, # z;. Then, for any g €
Gn1, g0 j*ler_, = j*ogle: , which shows that G, - (E2_,Uj*(2})) = (Gn1NGyy) -
(E2_,Uj* (x})) = E}_; Uj* (x}), which contradicts the initial claim that G,, — C?\E2_,
is highly transitive.
This ends the proof of the Lemma. 0

Lemma 40. Suppose that the group action G —— X has finitely many tuple types and it
s p-compact for some 1) < oo. Consider the group action G — X US. Any two robustly
exchangeable concepts C* and C? are either independent or correlated.

Proof. We assume that the thesis of Lemma 37 holds. We show that, if two robustly ex-
changeable concepts C! and C? are v-independent for some tuple v, then they are v"2-
independent for any =z € X.

Take any tuple v and element x € X. Let kg be the length of tuple v. Let k = ky + 13.
Suppose that C* and C? are robustly exchangeable and G-independent but G-,-correlated.
There are x{ € C? such that if C} = [z}; 9"z, C*, C?], then |C"\C}| < oo and the group action
Gywcr 02 — C§ is highly transitive. Let j : C3 — C3 be the correlating function of G-~
correlation. Take any finite set Vo 2 0, z, 2}, x3. Let Vi C [z{; v, C', C?] be finite subsets
such that [V!| =m and V2 = j(V}).

Suppose that m > 8. Take any k-local set U D V), V1 V2. Because of Gy-independence,

m) m-*

and by Lemma 16
|[V2; VL, 5,U]| > (m — 2)!

Because of Gy-,-correlation, any enumeration V2 is (@A:CAVT}L)—deﬁnable, where, for each 1,
Vi are enumerations of set V!. By a version of the counting argument from Section (7.2.6),

UL = | [z Vi Vi 0. U] 2 | [Vins Vi, 9, U] | > (m = 2)!
Thus, by Stirling’s approximation,

.. . log |U]| . (m—2)log(m —2)
lim inf inf _ >
m—00 UDVo,Vih V2 [Vo| 4 2m — m—o0 Vol +2m

= 0Q,

which contradicts 1)-compactness. 0
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APPENDIX D. ROBUST EXCHANGEABILITY UNDER COMPACT GROUP ACTIONS

The goal of this part of the appendix is to prove Lemma 3. Assume that G — X is
2—10—compact. Then, by Lemmas 35 and 37, the group action G —— X U S has finitely many
tuple types, and it satisfies two quasi-compact properties: for each k, there exists a constant
¢ such that for each finite V| there exists k-local U O V such that

1
log |U| < 1—010g V| + ¢x, and (D.1)
for each x € X U S, each finite set V' D [z], there exists k-local U C [z] such that V C U
and for each 2’ € [z], there exists a k-local U’ D U, 2’ so that

3
|U'| < 3 U] . (D.2)
Additionally, the results about splitting from Appendix B.4 apply.

D.1. Proof of Lemma 3. Set C' C X is complete, if |C| = oo, and there exists a constant
M < oo such that for each C" € [C], if C" # C, then |C"' N C| < M. We show the following
partial results.

Lemma 41. For each tuple T C X US and each © € S such that the relative type [z;T] is
infinite, there exists a tuple w O T and w € [z; ] such that the relative type [w;w] is robustly
block exchangeable.

Lemma 42. For each tuple T C X US and each x € S such that the relative type [z; T
15 robustly block exchangeable, there exists a complete and robustly block exchangeable set
C C [z] such that C\ [z;Z] is finite.

Lemma 43. If C' is complete and robustly block exchangeable, then C' is a concept.

Suppose that B is a block of a robustly block exchangeable concept C' C S. Then, B is a
concept. Because each element of C' is coinfinite, it must be that |B| = 1, and C' is robustly
exchangeable. Lemma 3 follows from the above results.

D.2. Proof of Lemma 41. Take any tuple z and element x such that the relative type
[z; Z] is infinite.

(1) There ezists a tuple z O T and z € [z;Z] such that the relative type [z;Z] is infinite

and the group action G —— [z; Z] is block 2-transitive. It is helpful to replace tuple

T C X US by a tuple ¥ C X so that each coinfinite concept is replaced by its two-

element code (which existence comes from Lemma 34). So, the length of tuple z* is

at most twice the length of tuple z. Because the relative type [z; Z] is infinite, because

of the finitely many tuple types, there exists z* € [z;Z*] such that the relative type
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[z*; Z*] is infinite.
Let ¢ be a two-element code of = (if # € X, then take ¢ = 2" z.). Because G — X
is 1)-compact, the induced group action G —— X U [Z] is 2¢-compact. By Lemma
28, the latter group action does not have a splitting sequence. By Lemma 27, the
relative type [z*; Z*] cannot be robustly split. Thus, there exists a tuple Z C X U[S],
zZ O *"Z, and concept z € [z*;Z*] so that the relative type [z;Z] is infinite and it
cannot be split. By Lemma 25, the group action G; — |[z; Z] is block 2-transitive
with a finite block B C [z; z] .
We show that the group action G5 — [z; Z| is block highly transitive. Let ko be the
length of tuple z. Let k = |2||B| + ko. Find a sequence x; € By, z3 € By, ... such
that B; € [B;z] are disjoint blocks of the block 2-transitive group action. Find a
collection of k-local sets such that U, D z, x4, ..., x,. Let B* = {B' € [B,z]; B’ CU}.
By compactness, we can choose sets U,, so that

lim l10g|B”[ < lim l10g|Un\ < i
n—oo N n—oo N 10

Because the sets U, are k-local, it must be that the group action Gzyn — B"
is 2-transitive. By Lemma 15, Gzy» — B" is alternating or symmetric. Thus,
G — [B; Z] is highly transitive.
For each tuple u 2D Z, there exists By € [B;Z] such that set [B;Zz]\ [Bg; ] is finite.
Notice that because set B is finite, the group action G — X U[B] has finitely many
tuple types. Then, for each tuple @ O Zz, there are finitely many relative types [B’; Z]
for B’ € [B; Z].
If the claim does not hold, there exists ¥ O z and B!, B € [B;z 0] such that the
relative types C' = [B';2°0] and C? = [B?; 2" 0] are infinite and disjoint. However,
that will contradict compactness by the counting argument described in Section 7.2.6.
For each tuple u 2 Z, the group action Gy — [Bg; | is highly transitive. We can
apply the previous point to tuples @ and u"u for each u € [Bg; @] to show that the
relative type [Bg; @] cannot be split. By Lemma 25, the group action Gz — [By; 4]
is block 2-transitive with some finite block C' C [By;u]. We can use a version of the
counting argument to show that it must be that |C| = 1. Hence, the group action
Gz — [Bg; 1] is block 2-transitive. Because any @ could have been chosen, it must
be that G — [Bg; @] is block highly transitive.
There exists tuple w O Z and w € [z, Z| such that the set [z; Z] \ [w; W] is finite and the
relative type [w;w] is robustly exchangeable. For each tuple v O Z, pick x; € By. If the
set [z; Z] \ [z5; U] is finite for all v, then the relative type [z; Z] is robustly exchangeable.
Otherwise, there exists v and x1,z2 € [z;Z] such that the relative types of x; and
Ty given v are infinite and disjoint. In particular, the group action G — [z';7] is
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block highly transitive with block B, = B; N [z'; 7] . Notice that | B.| < |Bz|. We can
repeat the argument for the group action Gy —— [z'; 7] . Because the initial block B
is finite, the argument will stop at a certain moment, and we find a tuple w O z and
w € [z,w] such that the claim holds.

D.3. Proof of Lemma 42. Take any tuple z and element z such that the relative type
[z; ] is robustly block exchangeable. For each tuple 7’ € [Z'], let S (Z') = ¢ - [x; Z] for some
g such that ¢ -’ = Z (the definition does not depend on the choice of g).

(1) There exists M, N < oo such that for all T',7" € [z], either |S(Z') NS (z")| < M,
or |S(Z')\S (z")] < N. Because of robust exchangeability, there is no z’ such that
the two sets S (z) NS (Z') and S (Z)\S (Z') are infinite. The claim follows from the
fact that the group action G —— X U S has finitely many tuple types. Let N be the
smallest constant so that the claim holds.

(2) Let C =J{S (@) : |9 (@)\S (z)] < N}. Then, Go — C' is transitive. That follows
from the fact that for each permutation g such that |S (¢-2)\S (z)| < N, g € Ge.

(3) |C\S (z)] < oo. This follows from Lemma 24.

(4) C is complete. Suppose that there is C" € [C] such that C\C" is finite. Then, there
is S () C C and S (z') C €’ such that S(z) \S (Z’) is finite. But then, for all such z
and 7', S (z) C C" and S (z') C C, which implies that C' = C".

(5) C s robustly block exchangeable. This follows from the facts that S(z) C C,
|C\S (Z)| < 00, S (Z) is robustly block exchangeable, and that G —— C'is transitive.

D.4. Proof of Lemma 43. Fix an infinite and complete set Cy C X such that G¢, — Cj
is robustly block exchangeable with block By. Fix xy € Cy. Because Cj is complete, there
exists constant M < oo such that for each C € [Cy],

{B € [Bo;Co] : BNC # @} < M.

Assume that M is the smallest such constant.

Fix Dy C C, such that zo € D and D is a union of M + 1 distinct blocks of Cy. Let d be
an enumeration of set Dy. Then, Cy is d-definable. Let T = {[z;d] : 2 € [zo]} . Because of
finitely many tuple types, 7 is finite.

Because G, — Cj is robustly block exchangeable with block B, for each x € [x¢], there
exists a finite set C' (x) C Cp such that G, — Co\C () is highly transitive. Notice that
if 7, 2" € [10], and o and 2’ have the same relative type given d, then 2 and 2" have the same
relative type given Cp, and |C ()| = |C (2')|. Let N = max,eier |C (2)]| < 00.

Let k = 10 (M + N + 1) |B|*. Suppose that V C [z] is a finite set such that Dy C V and
the intersection V' N Cj contains at least k distinct blocks of the group action G¢, — C.
For each such V| there exists a k-local UY C [z], UY D V such that for each z € [xg], there
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isa U C UV, such that |U| < 2 |U V‘ . Because of the definition of constant M and because
UV is k-local, for each C € [Cy], |CNUY| > M|B| if and only if C € [Co; U"].

For each # € UV, let i (x) be the number of concepts C' that are analogous to Cj relative
to U" and that contain z,

= |{C’€ [C’O;UV} ::L’ECH.

Because U" C [zo] is k-local (hence, 1-local), i (x) =i (x¢) for each x € UV.

(1) We show that HC’O; UV” < 0. Indeed, for any C,C" € [C’o; UV] , it must be that
|CNUY|,|C"NUY| > (M +1)|B|, and by the choice of M, if CNU = C'NU, then
C = (C'. A simple counting argument shows that for each x € UV

i(2) = — V(o UV
() UV] }COOU H[OO7U ” (D.3)
(2) We show that
, 11 v
i(r) < oIz IConUY|. (D.4)

Indeed, there exists By € [Bo; Cp) so that By N C = @ for any C' € [Co; UY] \ {Co}.
In particular, if B'C € [B§ Co; U] for some C € [Cy; UY] and BN B # @, then
C = Cp. Take any 2* € B*. Take any local U D UY, z* so that |U| < 2 |U|. Then,

\U| > !UV‘ + Hx €g-B*:g€ GvaU}|
UV |+ |B||[Co; U]

The claim follows from equality (D.3).

(3) We show that M < 1. If not, there is C' and M different blocks B; € [By; Cp] such
that B;NC # @ for i < M. W.l.o.g. assume that xy € By, and that V is large enough
that By, .., By € CoNUY and that [CNUY| > M |B|. Because Gey — [x;C, U]
is block highly transitive with block B, and by the choice of &,

|CNU|— |CnU|.

IBI - 2IBI

This yields a contradiction with inequality (D.4).

(4) We show that for each x ¢ Cy, and each C € [Cy] such that x € C and C N Cy C
C'(x) . On the contrary, suppose that there are = ¢ C' and C” € [C] such that z € C’
and ¢’ N C and C\C (z) have a non-empty intersection. Assume that V' contains
z and at least M + 1 distinct blocks of C. Let n < N be the number of blocks of
Co N UY that have a non-empty intersection with C (). There is at most one block
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of CoNUY that has a non-empty intersection with C. Because G¢, — C\C () is
highly transitive, we get

i(z) > |{C € [Co;U"] 1z € Cand (CNCy)\C (z) # T}
1 1
> E(!CﬂU!)—n> M\CHU\.
where the last inequality holds because of the choices of k and V' C UV. This yields
a contradiction with (D.4).

(5) We finish the proof of the Lemma. Suppose that Cy is not a concept. Then, because
[Co; U] is finite, there exists C' 3 g such that C' € [Cy]\ [Co; UY]. Let D = CNU.
Because M < 1, it must be that |D| < |B|.

Because of the previous step, there exists a finite subset W C C' such that for each
7' € UV\C, if C" € [Cy] and C" 3 2/, then C'NC C W. Let B be a block of the group
action G¢ —— C such that B is disjoint with UY and W. Let z € B.

Let D = CNUY. For each D' € [D;UV], find a By such that D" Bp € [D"B; UV .
Then, if D’ # D, then the intersection of Bp and B is empty. (Otherwise, there
would be ' € D'\ D and 2’ € C’ such that the intersection of C” and B is non-empty.
But that would contradict the choice of B.) It follows that By and Bpr are disjoint
for all distinct D', D" € [D;UV].

Take any k-local U D UV, x. Because U intersects C' at at least two distinct blocks
and M = 1, it must be that C' € [C’O; UV} . Thus,

U
02 W+ 181 [D: 07| = 101 + 181 [k = 2101,
where the last inequality follows from the fact that |Dy| < |By|. But that contradicts

the choice of UV.

APPENDIX E. COORDINATE SYSTEM

In this part of the Appendix, we prove the Lemmas stated in Section 7.2.8. Below, we

work with the action of group G on the space of elements X and coinfinite concepts S. We
1

always assume that the group action G — X is j5-compact and that the thesis of Lemma

37 holds.

E.1. Proof of Lemma 4. Fix a correlation class R of robustly exchangeable concepts. For
any two concepts C,C" € R, let d (C,C") C C be the finite exceptional set omitted by the
correlating function jo,cr : C\d (C,C") — C'\d (C",C), where jeorc = (jeor)

For each concept C' and each x € C, define set

T° (x,C) = {(jec (x),C") : C" € R,z ¢ d(C,C")}.
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Then, for each z,2’ € C, if x # 2/, then sets T° (z,C) and T° (2/,C)) are disjoint. For each
n > 0, define

T (x,C)=T"" (z,C)uJ T° (2',C"), and

(¢! CYeT "1 (2,C)
T°° (z,C) = U " (2,C).
Notice that T (z,C') = T (2’,C") for each (2/,C") € T* (z,C') . Finally, define
T (z,C)={x: (z,C) € T (z,C) for some C € R}.
Fix 29 € Cy € R and T € [T (zo,Cy)] . We show that
Lemma 44. For each C € R, [TNC| < 1.

Proof. Suppose not and that there are x,2’ € T N C such that x # 2/. We can assume
that (2/,C) € T* (x,C). (Indeed, if (',C") € T* (x,C) for some C’" # C, then using the
fact that C' and C” are robustly exchangeable concepts, we can show that d (C’,C) = {z}
and that jor o (2/) € T° (z,C").) By construction, there exists a finite sequence (z,C) =
(20,Co) , ..., (@, Cy) = (af,C) such that for each m < n, je,,.c0niy (¥m) = Tmy1 and the
group actions Ge,, .c,ir F— [Zm; Cm, Cg1] and Ge,, 6,01 = [@mi1; Cmy Cmya] are highly
transitive.

We show that there exists C' € R such that the group actions Ger ¢, iy 7 [T Coy Crogr, C]
and Ger o ™ [Tm+1; Cm, Cragr, C'] are highly transitive for each m < n. Pick any
C € R and let T be a code of C” (its existence follows from Lemma 34). For each #’ € [Z] and
each m, let F,, (') be a set such that G¢,, ¢,z - Fm (') = F,, (Z') and the group action
GepCmiri = [Tm; Cm, Crg1, ')\ Fi, (Z') is highly transitive. Let f* = sup,, |F}, (). Fix

N > mf* and, using Lemma 37, find 6-local set U D Z, x1, ..., z, such that for each m,
lUNC,| > N.

Then, the group actions G¢,, ¢,,.,.v — [Tm; Cm, Crt1]NU and G, ¢

my“m

.U [xm-i-l? Cm, C(m+1]ﬂ
U are 6-transitive and, by the CFSG, highly transitive. Let «,, be the fraction of tuples

7' € [z] N U* such that x,, ¢ F,, (Z’) and let a be the fraction of tuples 7’ € [#] N U* such

that = ¢ F, (z’) for each m. Then,

>1——f and o (T )>1—Z(1—ai)21—%mf*.
Thus, o > 0, and there exists ' such that z ¢ F; (z’) for each player i. Find the unique C’
so that z"C' s analogous to z’"C’. The claim follows.
Because jc,.cr () # joo,cr (¢') , there exists m < n such that jeo,, o (€m) # oo (Tmi1) -
But this contradicts the fact that pairs of elements (2, Tm+11)s (Tm, Jo,,.cr (Tm)) , and (X1, Jo,,.cr (Tmt1))
are correlated under the action of group Ge,, c,..1.c' € Gepn Crusr - O
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We show that T is a concept. By construction, for each x € T, there exists C' such that
T =T (x,C) . Because there are finitely many tuple types of concepts, |[T; z]| < |[C; z]| < oo,
and the bound is uniform across x.

We assume w.l.o.g. that T is coinfinite. (If not, replace 7' with the largest coinfinite
concept 17" DO T st. T is T"-algebraic. Such 7" exists, and it is unique by Lemma 36). Thus,
TeS.

Take any C' € R and consider the group action G¢ — {7 (z,C) : x € C'}. By Lemma 3,
there exists robustly exchangeable concept V' C [T] such that |V\{T (z,C) : z € C}| < 0.
Because G¢ — {T (z,C) : x € C} is robustly exchangeable, it must be that {7 (z,C) : x € C} C
V and jeov (x) =T (z,C) is the correlating function.

Let C* be the collection of concepts obtained in such a way for all equivalence classes R.
By construction, all concepts C’ € Cy are mutually independent, each concept C' € C is
correlated with exactly one concept C” € C* such that d (C,C") is empty, and that for each
rel x¢€ Jc.cr (x)

Finally, we show that the concepts in C* are mutually disjoint. Suppose not and that
C,C" € C* are two distinct concepts with non-empty intersection. By Lemma 38, the inter-
section must consist of exactly one element {x} = C'N C’. That implies that |[C'; C]| = co.
Find the largest coinfinite concept u 2 pC’ and such that C” is u-algebraic. Such a concept
exists and it is unique by Lemma 36. Then, = & u. Notice that {z/ € C': 2/ Cu} C C is a
concept. By Lemma 38, there are two possibilities:

e 1 is the unique element of C' such that = & z’. In such a case, by Lemma 3, there
exists a robustly exchangeable concept of concepts C” C {u': v'"2' € [u"z;C]} and
such that 2’ € C"”. Clearly C” must be correlated with C. But then, jor ¢ (2') C 2.
This contradicts the fact that x & a/,

o forallu € C,u & 2. Then, 2’ is is C-algebraic (because 2’ is a concept), and, because
x’ is C'-algebraic, it must be that C’ is C-algebraic. This yields a contradiction with
the fact that |[C"; C]| = co.

E.2. Proof of Lemma 5.

(1) This follows from the fact that there are finitely many concepts over each = € X.

(2) Suppose that z € C and 2/ € §* such that z C 2/, x # 2’. An argument from the end
of the proof of Lemma 4 shows that it must be that u C 2z’ for each u € C.

(3) Let L C S* be a finite set and let L be an enumeration of L. Suppose that |[{C': L (C) = L}| =
0o. Because of the finitely many types of concepts, there exists C' such that } [C’ ; E] ‘ =
oo. Let = be the unique coinfinite concept such that C' is z-algebraic (such a concept
exists and is unique by Lemma 36). Then, | [a:; f)} | = 00. By Lemma 3, there exists a
robustly exchangeable concept C” such that C"\ [x; Z_L} is finite. Find concept C” € C*
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that is correlated with C’. Then, for all z’ € C'N [x; E} , ' is contained in a different
element of concept C”. Because there are infinitely many of such 2/, and because each
such 2’ is associated with a disjoint and finite set of concepts ¢ € |{C : L (C') = L}|,
it must be that set L contains infinitely many elements of C’. But this contradicts
the fact that L is finite.

E.3. Proof of Lemma 6. Say that set L. C S* is upper, if for each S € L, L (S) C L.

We show that for each concept C' € C*, each finite upper set L, each enumeration L of
L, G; NGo — C\L is highly transitive. First, suppose that L = L (s) for some (hence, by
Lemma 5, all) s € C. Then, G, O G¢, and by Lemma 5, [G, : Go] < co. Because set L is
finite, the index [G, : G| = [Z), L] is finite, and

[GchiﬂGc] < [GL : Gf/ﬂGc] < [GL : Gz] [GL : Gc] < Q.

Because finite index subgroups of highly transitive group actions are highly transitive (Lemma
13), Gy N G¢ — C' is highly transitive.'! More generally, assume that L D L (s) for some
(hence, all) s € C. The proof follows induction on the size of set |L\L (s)|. Suppose that L
is an upper set, L' = LU {5’} is an upper set for some s’ € C' € C*, and Gy NG — C\L
is highly transitive for some enumeration L of L. If S’ € C' (and C’ = C), then the claim is
trivial. So, we assume that 5" ¢ C. Notice that

[Gi ﬂGC . GE ﬂGcﬂGcl] S [GL . GZ] [GL . GC’] < 0.

Thus, the group action Gy NG NGer — C\L is highly transitive. If G- NG NGer —
C\L is not highly transitive, then C' and C’ are Gz-correlated, which contradicts the fact
that C' and C" are independent.

Next, suppose that s,s’ € C € C*. We show that for each finite set Z C X U S§*, there
exists a permutation gz € G such that gz - (s,8') = (¢,8), gz-z =x and 5 (g7 -S) = B (S5)
for each S € L (z) for each z € Z\ (sU¢'). Indeed, the existence of such a permutation
follows from a repeated application of the above observation.

For each finite A C Z, let

Vi={r e XUS : {B(S):SeL(x)=A}.

We show below that set V4 is necessarily finite. Then, P = {V,4: A C Z, A is finite} is a
partition of X U S*.

Finally, let Z; C Zy; C ... be an increasing sequence of finite sets with union equal to
XUS*. Let g1 = gx, and ¢, = gz,.,, - ggj. The sequence {g;} satisfies the assumption of
Lemma 30 with partition . The result follows.

HRecall that the definition and properties of the subgroup index are stated in Section B.1.1.
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Lemma 45. V, is finite for each finite A C Z.

Proof. The claim follows by induction on inclusion and Lemma 5. 0J

E.4. Proof of Lemma 8. We need to show that for each S € Sy, each tuple 2° C F (9),
each tuple 7 C X\ E (19), there exists a tuple ' C F (US) such that 2°°7 ~ 7°°7'. Let
L = UIEEL (x) \US. Using Lemma 6, we can find a permutation h € Gzo such that for each
SelL,B(h-S)<L.Foreach x € z x ¢ E(NS), which implies that L (z) N L (S) & L(S).
Thus, h- L (xz) & L(S), which implies that o -z C E (US).

E.5. Proof of Lemma 7. Recall the definition of set V) from the proof of Lemma 6. For
each finite B C Z, define U = U {Va:AC B}. Then, Ug is finite.

Fix bijection v : Z — N. Take any increasing sequence of finite sets B; C By C ... whose
union is equal to X US*. Using Lemma 6, we can find an increasing sequence of permutations
gi such that for each A C B;, g; - V4 = V,(4). Using the argument from Lemma 30, we can
show that, possibly by taking subsequences, there exists a pointwise limit a = lim; . ¢;
that is a bijection a : X — X, that preserves relations.

Take any permutation g € G and consider a bijection g, : Xqg — X defined as

g () =ao0goa™(z).
Because g, preserves relations, g, extends to g, € G such that §.|x, = go. By choosing
proper sequences of permutations from Lemma 6, together with an application of Lemma
30, we can show that there exists a permutation ¢’ € G"* such that ¢'|x, = ¢5. This shows
that the group actions G —— X and G"° —— X are isomorphic.

E.6. Finite family E# (S). In order to ensure that the group action Hg — E (9) is finite,
it is useful to define two other families of sets. First, we expand sets E (.) to include the
"coordinates" S*: For each S € Sy, define the set of elements x such that S is the smallest
member of collection Sy that includes z,

E*(S):{xeXUS*:S:ﬂ(L(x)ﬂS(’{)}.

Then, E (S) = E*(S) N X. Second, we define finite approximations of E* (S): For each m,
let

E,(S)=E"(S)N(Xou{SeS :—m<5(5) <0}).
Then, each set E,, (S) is finite, and for each g € G"¢, g - E,, (S) = E,, (g 5). Let E* (L) =
Uger £%(S) and By, (£) = Uge, Em (S) for each set £ € Sy. We show the following result.

Lemma 46. For each S € Sy, the group action G'& —— E* (S) has finite orbits and

B (S): G, B (uS)} - [E (S); G, X\E" (N9)] . (E.1)
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There exist constants mg > 1 for S € Sy such that if E# (S) = E,,, (S), then

[E#—(S); Gm, M} - [E# (S); G, X\ B~ (mS)] .

First, fix S € Sp. We show that G%° —— E* (S) has finite orbits. Take any g € G%°. Then,
foreachx € E*(5),5 (g L(z)) = g-L (z) . (Indeed, for each S’ € L (z), if 5" is positive, then
S"e L(S)and B(g-95") € B(L(x));if S is negative, then 3 (g-S") = 5(5') € 5 (L (z)).)
Additionally, if + € S*, then z is negative, and 8 (¢g-z) = [ (x). Thus, g-2 € Vs () if
r€ X and g-x € Vaugsy if © € S*. Because sets V4 are finite (Lemma 45), it must be
that G —— E* (S) has finite orbits.

Next, we show equality (E.1). Suppose that tuples z,7’ C E*(S) are such that for each
tuple z° C E* (US), there exists a permutation h € G such that h-7° = 7° and h- 7 = 7.
We show that for each 7° C X\ E* (1S5), there exists g € G™ such that h - z° = 7° and
h -z = . Indeed, take any z° C X\E*(1NS). By conditional independence (Lemma 7),
there exists a permutation ¢’ € G such that ¢ - z° C E*(US) and ¢’ - "7 = 7" 7'. Find
permutation h such that h- (¢' - 7°) = (¢’ - 7°) . Let ¢" = ¢'"'hg’. Because 3 (¢” - S) = 5 (S)

Because of (E.1) and the fact that set E,, (S) is finite, for each S € Sy, there exists k& (m)
such that

| B (8); 6™, By (0S)] = | B () G, X\E* (715)]
For S € &y such that if S C S and S’ € Sy, let mg = 1. Recursively define

ms = max (K (ms))

The result follows.

E.7. Subgroup copies. Next, we describe conditions that imply that the group actions
H +— X, and G —— X, are isomorphic.

For each subset A C X US*, two permutations h and h' are A-copies, if h|4 = h'| 4. Two
subgroups H, H' C G are A-copies, if for each h € H, there exists i’ € H' (and vice versa)
such that h and b’ are A-copies. Thus, H and G™* are Xy-copies, then their actions on X

are isomorphic.

Lemma 47. Suppose that S € Sy and sets W' = W U [S; G™] C Sy are such that for each
S"e W', L(S") CW. Suppose that H and G™ are E* (W)-copies.
(1) If H contains permutations of (s, s')-type for each s,s' € [S;G"], then H and G"*
are (E# (W) UW')-copies.
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(2) If, additionally, [E# (S); Gne, B# (uS)] — [E# (S); H, X\E*(19)| , then H and G"*
are E¥ (W')-copies.

We start with the first part. Take any permutation ¢ € G™ and find its E# (W)-copy
ho. Enumerate C1, Cs, ... all concepts C; € C* such that the intersection C; N [S; G| is non-
empty. Then, C' € [S;G"] and g-C = hy-C. Because H contains permutations of (s, s')-type
for each s,s" € CN[S; G"], we can find a sequence of permutations h; such that h;,_; and h;
are E# (W')\C N [S; G"|-copies and h; and g are C N [S; G"“|-copies. By Lemma 30, there
exists limit & = lim;_,o, h; such that h and g are (E# W)uw’ )—copies

Second, assume that [E# (S); Gre, B# (uS)] - [E# (S); H, X\ E~ (nS)] . Then, by Lemma
46,

[E# (S); Gre, BF (US)] - [E# (S); H, X\ E" (mS)]

Take any g € G™ and find its E# (W) U W'-copy ho. We show that there exists hg such
that hg and hg are E# (W UW') \E?# (S) -copies, and hg and g are E* (S)-copies. Then,
using Lemma 30, we can show that there exists a permutation A such that h and g are
E# (W UW')-copies.

Because hg, g € G", there is a permutation ¢’ = ghy' € G™ such that ¢’ is constant on
E#* (W)\UW' and ¢'hy = ¢g. By the second part of Lemma 46, there exists permutation
k' € H such that I/ is constant on X\E*(MS) and A’ and ¢ are E# (S)-copies. Thus,
hs = Who and hq are E# (W U W') \ E# (S)-copies, and hg and g are E# (S)-copies.

E.8. Proof of Lemma 9. Fix an increasing sequence of subsets @ = S} C S§}... C S = 8,
such that for each k > 0, there exists S € Sy such that S§™ = SFU[S; G™] and L (S) C SE.

Say that subgroup H C G™ has finite orbits up to level k, if for each S € SF, [E* (S); H] ‘ <
0.

By induction on k£ > 0, we show that there exists H C G™° with finite orbits up to level k
and such that H and G" are E# (S})-copies.

The inductive claim is immediate when £ = 0. Fix £ > 0 and suppose that H C G
has finite orbits up to level k and H and G™ are E# (SF)-copies. Let S € Sy be such that
Skt = Sk U [S;G™]. Let &#, &, and & be enumerations of, respectively, E# (S), E (5),
and E* (LS).

Let H* be the set of all permutations b’ € G™* such that /. () € {h () ¢ h e H} :
Then, H* contains permutations (z,2’)-type for each x,2' € C and L (C) C S¥. By Lemma
A7, H* and G™ are E# (SF) U S§™'-copies and for each s’ € [S; G™], there exists gs € H*
such that gg - S = 5"
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There exists F* C H¢ such that ) [E* (S); F*} < oo, F* and H§ are E* (LS)-copies, and

[é#;G"C,M] :{f-é:feF*ﬂHm}.

By Lemma 46, there exists a finite set Fy C G&°N Gm such that [é#; G"e, W =
{ f-e*t:fe Fo} . Additionally, because H* has finite orbits up to level k, there is a finite
set I} such that for each h € HY, h|g-us) € {f|E(US) f e Fl} . Because G —— E* (S) has
finite orbits (Lemma 8), Lemma 29 implies that there exists a subgroup F* D Fy, F} such
that [E*—(S), F*H < 00.

For each permutation h € Hg, there exists a permutation h' € Hm such that
h'h € F*. Indeed, because F* and H are E* (LS)-copies, for each h € HY, there exists
f € F* such that h|g-us) = f|g+wus). Hence, f - e” € [h -e? G h - éA] . By Lemma 46,
f-e*e [h e G”C,m] . The claim follows.

For each S’ € [S; G™], define

G(S') = gs - [& F].

For each permutation h € H*, for each S” € [S; G"], there exists a permutation pg (h) €
Hg,ﬂH;(\TW such that ps: (h) h-G (h™1 - S) = G (h - S) . Indeed, notice that gg'hgy-1.5 €

H. By the pervious observation, there exists h” € HgN Hm such that

W'gs htnrsr (959G (071 5)) = g0 oG (R0 5) = & F7).

Let ps (h) = gs'h"gg!.

Let S, Ss, ... be an enumeration of [S; G™¢]. By Lemma 30, for each permutation h € H*,
there exists a permutation

p(h) = (...ops,ops,) (h).

Then, p (h) ’E#(S(’)“) = h’E#(S{;) and for each S’ € [S;G™], p(h)-G(S") = G(p(h)-95') =
G (h-S"). Moreover, if h is a permutations of (z,2’)-type for some z,2’ € C NSy and
L(C) C 8% then ps,, (h) is a permutation of (x,2’)-type for each m, and p(h) also is a
permutation of (x, z’)-type.

Let H = {p(h): h € H*}. Then, |[e; H']| = |G (S)| < co and H' has finite orbits up to
level k + 1.By Lemma 47, H and G™¢ are E# (Sé““)—copies.

APPENDIX F. DECOMPOSITION OF UNCERTAINTY

F.1. Borel decomposition of finite invariant distributions. The first result describes a
version of the Borel decomposition argument appropriate for distributions that are invariant
with respect to finite group actions.
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Let B be a finite regular of orientations. Then, B has a group action on itself: B —— B
defined so that for each b,b' € B, b-b' = bol’ (the left part of the formula defines the group
action, and the right side corresponds to a composition of orientations).

Let A be a finite set. Let H —— A U B be a group action so that H - B = B, and the
group actions B — B and H —— B are isomorphic. For each h € H, let b, € B be the
unique orientation such that for each b € B, h-b = bob,,. Notice that if h € H,, then b, = id
and h € Hj for any enumeration b of B. Let Hiq, denote the subgroup of permutations that
keep all elements of B fixed.

Some notation is useful. Suppose that Z is a set, A is a countable set, and H — A is a
group action. Define the action H —— Z4 of group H on functions 7 : A — Z,

(h-7)(a) =7 (h™"-a) for each a € A.

Similarly, define the group action the action H —— Z4 of group H on functions 6 : B — Z.
For each (possibly countably infinite) tuple @ of elements of A, define mapping @ : Z4 —
ZWMI from that assigns functions 7 with sequences of elements of Z,

a(t) = (r(ar),7(az),...).
The inverse mapping a~! takes sequences of elements of Z into functions 7. Then,
a(h-7)=(h""'-a)(r). (F.1)

Let w : Z4 — AZPB be a collection of conditional distributions over functions § € ZB
given functions 7 € Z4. Conditional distributions w are H-invariant, if for all 7 € Z4, all
measurable sets U C Z7, and all permutations h € H,

wh-0e€Ulh-1)=w(ld € U|r).

The left-hand side is a conditional distribution given that the realization of variables on set
A is equal to A.

Lemma 48. Let A be a finite set. Let B be a finite reqular set of orientations. Let H ——
AU B be a group action so that H - B = B, and the group actions B —— B and H — B
are isomorphic. Suppose that conditional distributions w : Z4 — AYE are H-invariant. Let
a* be an enumeration of A.

Then, there exists a measurable function f : [0,1) x ZI4 — Z such that if n is uniformly
distributed random variable, then for each 7: A — Z,

(1) for each h € Hiq,,,
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(2) for any selection of permutations h, € H so that b = hy, - idp, the joint distribution
of variables

fo),(hy-a*)(r)),beB (F.2)

is equal to the conditional distribution w (.|T).

Because of the first property, the values of terms in (F.2) do not depend on the choices of
permutations hy. Indeed, if b = h - b* = h' - b*, then h'h~! € Hiq,, and for each 1,

f@m),(h-a)(r)=f @@, #h h-a)(r))
= f ), (" -a)(r)).
Proof. Fix interval I C [0,1) such that {b(I):b € B} is a partition of the interval [0,1)
into |B| disjoint sets. For each n € [0,1), there exists unique b, so that n € b, (/) (or,

alternatively, b, ' (n) € I).
Define the action H — ZMI, of group H on sequences of elements of Z!4!,

h-z=a" (h-@)"(2)=("a)(@)" ().
Then, for each h € H, and each 7: A — Z,
h-(a* (1)) =a" (h . (d*)_1 (a* (T))) =a*(h-7). (F.3)

(The second equality follows from (F.1).)Then, for each h,h’, and Z,

Consider the action Hiq, —— ZI of the subgroup that keeps all elements of B fixed.
Because Hiq,, is finite, the type of each element Z is finite, |[Z; Hiq,,]| < 0o. One can find a
measurable subset £ C Z such that for each Z, set F contains exactly one element of the

type of y,
EN [z Hayl ={r (@)},
for some r () € ZAl.

Let A; be the uniform distribution on the interval /. By the standard Borel decomposition
result (for example, see Kallenberg (2005)), there exists a function 6 : I x Z4l — Z5 such
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that if u is chosen from )7, then the distribution of 6 (u, z) € Z% is equal to w (_| (@)" (2)) .
Because of H-invariance of w, for each measurable U C ZP, for each h € H,

Ar(0(u,2) eU)=w (0 €U| @) " (2))

=w(@eh™ Uh-(a)"(2)

=w(@eh™ Ul@)" (hz)

=X (h-0(u,h-2)eU), (F.4)
and the distribution of variables h - § (u, h - Z) is equal to w (.| (@)~! (2)) .

For each ) € I, each b € B, any h;, so that b = hy, - idp, and each z € ZI4I, define
fom),2)=0(nr (k' 2) ().
Notice that the definition does not depend on the choice of h;. Indeed, if b = h-idg = h'-idp,
then (h')"" h € Hiy,,, and
(0 h) ntez= (@) ) =)

The latter implies that h~! -z and (A’ )_1 - Z have the same type under the group action with
respect to the group action Hiq, — ZM! and

6 (n.r (07 2)) (0) =8 (nr () 2)) ().

We show that function f satisfies the first property stated in the Lemma. Let z = a* (7).
Fix b € B and hy, € H so that b = hy-idp . Suppose that h € Hiq,,. Then, b’ = hbhhgl € Hiap,
and

hy ' - (h-z)=(hy'h)-z=(Wh ') - z2=1h- (b, 2),

which implies that h’l (h-Zz) and hfl Z have the same type with respect to the group
action Hiq, — ZA. Thus, r (b, z)) =r(h," - 2), and by (F.3),
f(b(n),a”(h- )) f (o), h )
=3 (n,r (hy "+ (h-2))) ()
=0 (n,7 (hy )) (b)
=f M),z =fbmn),a" (7).

We show that function f satisfies the second property. Let z = a* (7). For each by € B,
each n € I, and any selection h, € H so that b = hy - idp,

f(b(bo (), he-2) =6 (0,7 (hyep, - (s - 2))) (b o bo)

=0 (n,r (hb_ol . 2)) (hp, - b)
=6(m,h-2) (") =h-6(n,h-2)(b) (F.5)
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for some h so that h-by = idg . By (F.4), the joint distribution of variables (F.5) is equal to

w (@) (2). O

F.2. Proof of Lemma 10. We assume notation from Section 7.3. We start with some
notation. Recall that U consist of shocks 7y identified by concepts S € Sy. In what follows,
we identify shocks with the associated concepts. So, the joint realization u of all shocks in
U is treated as an element of space u € [0,1)%.

We define the action of group H on the joint realization of shocks,H — [0, 1)50 . Because
XoUQO is a system with orientations, for each S € t C Sy, there exists an orientation ¢ (S) €

Q' such that for each (ns,q') € O, h-(ns,q") = (nh(gl), qgogq (S’)) . For each u € [0, 1)“, let
(h-u)(S)=¢q(S)(u(h-S)) for each S € Sy. (F.6)

Then, for each tuple of orientations o C O,
(h-0)(u)=0(h-u). (F.7)

Slightly abusing notation, we write (h - u') € [0, l)h(‘sl) for any v’ € [0, 1)8/ and some subset
of concepts &' C S,.

We move to the proof of the Lemma. The proof goes by induction on the set of types
T. Take any set Ty, let Sy = UTU’ and Oy = L_JSe
of orientations 0° for all o € O, that satisfy the thesis of the Lemma for all H-invariant
distributions w* € A (ZOO) that satisfy CI, and that additionally, each 0° contains each
orientation in set U {0g:5"€S8,5 p S}

Suppose that T = Ty U {to} and Tj is an upper subset of T, i.e., for each S € t € Ty, for
each S"et' e T,if S C S, then t' € Ty. Let w* be an H-invariant distribution that satisfies
CI. For each t € Ty, find o' 0'-symmetric functions f* that decompose marg, w* as in the

s Os. Suppose that there exist tuples
0

thesis of the Lemma.
From now on, fix concept S* € ty. Define the set of orientations

OLg = U{OS/ = US*} .

Then, for each o € Og«, 0(0) is conditionally independent from {6 (0'),0" ¢ Og-}, given
{0 (O/) s o € OUS*} .
Let n® = |US*|, n® = |Ous+|, and n = n® + n’. Fix orientation o* = (S*,id) € Og-.

Find a tuple 0** that contains exactly one orientation of each concept in set LIS*. Find an

enumeration 6** of set Opg.. Let 0* = **"6**. Define mapping (0*"5**)~" : [0,1)"" ™" —
[0,1)29957 5o that

0" o™ ((0”“5*“)_1 (w) =u
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for each @ € [0,1)" *'. We have

P (00 (o ) () = B 00 ) (070 (w)
= h_l . (h . U) |LIS*U{S*} = U’|IJS*U{S’*}7 (F8)

where h - u is defined in (F.6).

Consider a marginal distribution w = margy_, o .. w* € A (Z Ous*uos*) . Then, the con-
ditional distributions w (.|0* (0'), 0" € Ops+) over functions 0 : Og« — Z are H-invariant in
the sense described in part F.1 of this appendix. By Lemma 48, there exists a measurable
function f : [0,1) x Z" — Z such that for each 7 : O g« — Z, for each h € H st. h-o* = o*,

f(ns=,0* (1)) = f (n(S*),0* (h-7)) (F.9)

and for any selection of permutations h, € H so that o = h,-0*,0 € Og-, the joint distribution

of random variables
f (0 (775*> ’ (ho . a*b) (7—)) ,0 € OuS* (FlO)

is equal to the conditional distribution w (.|7).
Define a measurable function f% : [0,1)"" — Z so that for each @ € [0,1)

n®+1
1 (a) = f (20,21, 2p) , Where
where 2y = (¢*) " (u1) , and for each m < n’, S** € t,, and

Zm = fim ((0;‘72’%30;3) ((6*° o)~ (a))) .

We show that function f is o* o*-symmetric. Take any permutation h € Hg+ such that
h-o* = 0*. We need to show that for each u € [0,1)%

£ ((075") () = £ ((h-0"™) (w)
Indeed, by (F.9),
1 (@)
)" () 1 ((o10F") (070 (@) )
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By (F.7) and (F.8), if w = (h - 0*"6**) (1), then the above is equal to

(07 (), 1 ((o170") (071 (0 0) ™ (@) )
o ft (0 (o0 (00 (@)

= £ ()7 (w) £ ((30) (luis)) s 20 ((03870% ) (mluse) ) )

(
= f (0" 0™) ()

For each 0 € S € t, find tuple 0° such that o*"0* and 0" 0° are analogous. Suppose that
u € [0,1)% is a realization of shocks, and let 7 : O g — Z be such that

=f

7 () = f* ( 6% (u )) for o' = (ns/,p) € Ous, S €tNUS, and t € T.
We show that the joint distribution of variables
f(0°0°(n)), for o € Og and S € tg

is equal to is w (.|7) . Let h, € Hg be such that o = h, - 0*. By symmetry of f* forallt € T
and by (F.7),

= [ ((ho - 0") (), (ho - 0") (1))
= fto (O* (ho ' 77) 75* (ho : 77))

= J (o5 7 (070" ) (o m)) oo S5 (0370 ) (o= m)))
= (o (8), 1" (R 01 0™ ) 1) oo £ (o= 070 ) () )

(0 (S™)) ,T(ho 0‘1‘1’) ,T(ho-o*l,’,))
— F(0(1(8), (ho-0™) (7).

The claim follows from the fact that the joint distribution of (F.10) is equal to @ (.|7).

APPENDIX G. PROOF OF SUFFICIENCY PART OF THEOREM 3

We begin with two technical results.

Lemma 49. For any two analogous tuples of orientations 6 ~ o, there is a measurable

bijection 7 : [0, 1)u — [0, 1)“ such that =1 is measurable, ™ preserves measure \Y, i.e., for
each measurable E C [0,1), A\V(E) = AV (x (E)), and

o (m(u) =0(u).
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Proof. Let 0 = ((n1,q1) -, (Mnyqn)) , and & = (0}, 4}) , -, (1, ¢,)) . By the definition of a
system of orientations, for any m,m’ < n, n,, = n, if and only if 7, = 7/ ,. Thus, there
is a bijection ¢ : U — U such that ¢ (n,) = 7., for each m < n, and ¢ (n) = n for each
n ¢ {m,...n}U{n,....n,}. Also, for each n € {n1,...,m,}, there is ¢" € @, such that for
each m < n, ¢, = ¢" o g, For each ) ¢ {n1,...,m}, let ¢" = idjo1) . For each u € [0, 1)“,
and for each n € U, define

(m(u), = ¢ (i)

It is easy to check that mapping 7 has the required properties. 0

Lemma 50. If f : [0,1)" — Y, is (2° 0°)-symmetric, then for any v € X, any tuples

of orientations 6 and o such that ©°0 and 2" are analogous to x°°0°, it must be that
F(o(u) = f (@ (w)) for all realizations u € [0,1)%.

Proof. By external consistency, there exists a tuple 0” such that 2°6°0" is analogous to
29°6°°6". By internal consistency, tuple z°°3” is analogous to ", and, as a consequence,
to 2°°6°. By symmetry, for each u € [0,1)*, f(5° (u)) = f (5% (u)). By Lemma 49, there

exists a measurable bijection 7 : [0, 1) — [0, 1) such that for each u € [0,1)¥,

fo()=f (" () = f(a" (7 (u) = f (o' (u)).
0

Take any two analogous tuples & = (z1, ..., z,,) and ' = (z1,...,2},) . Find tuples oy, ..., 0y,
such that for each £ < m, tuples "0 and z; 0x. Find tuples 0}, ...,0,, such that tuples
/

1701 ... Xy O and 270 ".... 2] "0, are analogous. By consistency axioms and the defi-
u
Y

nition of random variables 8/ (.;u), for each k < m and each u € [0,1)

0 (wx;u) = f (0 (u)) and 6 (zy;u) = f (0} (u)).

(We drop the superscript (f, x,0) as it won’t lead to ambiguity.) By Lemma 49, there exists
a A-preserving measurable bijection 7 : [0, 1)¥ — [0,1)* such that 7! is measurable, and
for each & < m and each u € [0, 1)“,

Hence, for each £ < m
0 (wy;u) = 0 (z; 7 (u) .-
Because 7 preserves measure AU, the joint distribution of variables (6 (z1;.),...,0 (x;.)) is

equal to the joint distribution of variables (6 (x};.),...,0 («},;.)) . This ends the proof of the
Theorem.
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APPENDIX H. PROOFS OF THEOREMS 1 AND 2

In this section, we show that Theorems 1 and 2 are corollaries to Theorem 3.

We assume that the thesis of Theorem 3 holds: Let V = {[z] : x € X} be the set of types
of 1-tuples. Then, there exists a relational system with orientations (X U O, ~), elements
x, and tuples of orientations 6V, v € V such that for each each (X, ~)-invariant distribution

n v

w there exist (z¥,0")-symmetric functions f¥:[0,1)" — Y for v € V such that w is equal

to the joint distribution of variables
Qf“,m”,av (.T,U) . cove V

H.1. Proof of Theorem 1. For each z € v € V, fix a tuple * = ((n{,¢¥), ..., (N%, ¢%))

such that z°0% is analogous to #* oV. Define a function

f:r (ula ---7un“) = fv (qf (ul) ) "'7qiv (un”))

Then, the number of different functions f, is bounded by the number of types of 1-tuples
|V|, the number of different orientations, and the number of parameters of functions f*.
In particular, there exists finite m and n such that each invariant distribution w admits
(m, n)-decomposition.

H.2. Proof of Theorem 2. Suppose that w admits (2, 0"),.,-decomposition with (z",o")-
symmetric functions f,. Assume that assignments k£ and n are obtained as in the above proof
of Theorem 1. Then, z € v € V is not affected by shock 7 if, for almost all realizations
we [0,1)%, 67" (z;u (—n) ,n) is an almost surely constant function of realization 7.

The proof is divided into the following steps. First, because orientations are measure-
preserving bijections, we can assume w.l.o.g. that for each v, tuple 6" = ((n},p}), ..., (4w, o))
consists of orientations of distinct shocks, 7,, # 1,,» for all m # m’ (one can always redefine
tuple 0 and symmetric function f, to avoid repeating orientations of the same shock).

Second, we can assume w.l.o.g. that for each m < n", for almost all realizations of
u, fy(0(u)) is not almost surely constant function of u (n!,) (otherwise, one can redefine
symmetric f, to avoid spurious parameters).

Third, for each tuple of orientations o = ((11,p1),--., (Mm, Pm)), define the shock support
of 0 as supp (0) = {n1,...,nm}. Then, for any = € v, and any two tuples of orientations 6
and 0/, if 70 and x"0 are analogous to zV" 6", then supp (0) = supp (¢') . (Indeed, if not,
then w.l.o.g. there is n € {ny,....;nw} \{n},...,7..}, and the value of [ (6(u)) depends
on the realization of w (n), but the value of f¥ (¢’ (u)) doesn’t. Because of the first two
steps, f(0(u)) # f (0 (u)) for some realization of u, which contradicts the fact that fv is

(¥, 0")-symmetric.) Define
u ([L’) = {7717 "'777n”} .
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Then, x is affected by shock 7 if and only if n € U (z) . In particular, each x € X is affected
by at most finitely many shocks.
Fourth, it follows from the third step that, for each orientation o of shock n € U (1) \U (1),
if 1" 5" 0 1s analogous to | "z "0/, and ¢’ is an orientation of shock 1/, then n’ € U (x}) \U (z).
Fifth, suppose that = € D (n) for some shock 7, and D (n) is analogous to D C X
relative to x. We show that there is a shock 7’ so that D = D (7). Indeed, there are
enumerations di, ds, ..., of D (n), x1, 2, ..., of X\D (n), d|,d,, ..., of D, 2,2, ..., of X\D,
such that for each m, tuples " d;"z1"..."d,," ., and z°d} "2 "..."d., “z! are analogous. Let o
be an orientation of shock 7. By external consistency, there exist orientations o0, = (9, Pm)

ApA g A A A A~ U N B N A
such that tuples o"z"dy"x,"..."d,," T, and oy, " dy "2y "...7d}, ")

are analogous. By the
third step, 1, € U (x). Because U (z) is finite, and the set of orientations of each shock
is finite, there are finitely many orientations of each shock in U (z). Thus, there exists an
orientation o’ of shock ' € U (x) so that for infinitely many m, tuples o z"dy"z1"... d;," Ty,
and o,z d}"x}"..."d, "x! are analogous. By internal consistency, it must be that tuples
o'z dy x ... dp, Ty, and o, x dy "2 "..."d) " x! are analogous for all m. By the fourth
step, it must be that 7' € U (d) for each d € D, and ' ¢ U (2') for each o’ ¢ X\ D. By the
third step, D (1) = D.

If there are infinitely many sets D that are analogous to D (n) relative to z, then there are
infinitely many shocks 7’ such that D (') is analogous to D relative to x. Because x € D (/)
for all such shocks, it must be that U (x) is infinite, which in turn leads to a contradiction

with (3).

AprPENDIX I. PROOF OF LEMMA 11

For each x,2' € X, let x /A 2/ denote the symmetric difference of sets = and 2/, i.e.,
x A x' = x\a' Uz'\z. The symmetric difference is reflexive, symmetric, and transitive: for
each z,2',7" € X,

rAr =,
xAzx = 2/ Az,
(zAz") Ax" = zA (2’ Ax").
Because of the first and the last equality above, xA. : X — X is a bijective mapping such

that A (zAx’) = /. One can check that two tuples z,z’ € X* are analogous if and only if
there exists z € X such that

(r1Az)) Az = ) for each | < k. (L.1)
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Suppose that U is a local set. Take anyy ¢ U and z € U and define

U'=UU(yA2) AU ={z,yAzANz:x2e€U}.

Then, |U’'| < |2U].

We show that U’ is local. It is enough to check that external consistency holds. Take any
two analogous tuples z,z’ of elements of U’. Take any € U. Then, ¥’ ((z1Ax}) Az) is
analogous to z"z. We show that 2/ = (z;Az)) Az € U'".

Notice that «' = (z1Ax)) Az is the unique element so that x; "z is analogous to = x’.
Because U is local, if z1, 2,z € U, it must be that 2’ € U. For all 21,2}, € UUyAzAU, «’

takes one of two forms:

7 = (wiAwy) Aw, or

¥ = (yAz) A (w1 Aw)) Aw),
for some wq, w],w € U. In particular, 2’ € U’.
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